Article

Disulfide bond-mediated dimerization of HLA-G on the cell surface.

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2003; 99(25):16180-5. DOI: 10.1073/pnas.212643199
Source: PubMed

ABSTRACT HLA-G is a nonclassical class I MHC molecule with an unknown function and with unusual characteristics that distinguish it from other class I MHC molecules. Here, we demonstrate that HLA-G forms disulfide-linked dimers that are present on the cell surface. Immunoprecipitation of HLA-G from surface biotinylated transfectants using the anti-beta2-microglobulin mAb BBM.1 revealed the presence of an approximately equal 78-kDa form of HLA-G heavy chain that was reduced by using DTT to a 39-kDa form. Mutation of Cys-42 to a serine completely abrogated dimerization of HLA-G, suggesting that the disulfide linkage formed exclusively through this residue. A possible interaction between the HLA-G monomer or dimer and the KIR2DL4 receptor was also investigated, but no interaction between these molecules could be detected through several approaches. The cell-surface expression of dimerized HLA-G molecules may have implications for HLA-Greceptor interactions and for the search for specific receptors that bind HLA-G.

Download full-text

Full-text

Available from: Jonathan E Boyson, Jul 07, 2015
0 Followers
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HLA-G is a nonclassical HLA class I molecule. In allogeneic situations such as pregnancy or allograft transplantation, the expression of HLA-G has been related to a better acceptance of the fetus or the allograft. Thus, it seems that HLA-G is crucially involved in mechanisms shaping an allogeneic immune response into tolerance. In this contribution we focus on (i) how HLA-G is involved in transplantation and human reproduction, (ii) how HLA-G is regulated by genetic and microenvironmental factors, and (iii) how HLA-G can offer novel perspectives with respect to therapy.
    Research Journal of Immunology 07/2014; 2014:297073. DOI:10.1155/2014/297073
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KIR2DL4 is an unusual killer cell immunoglobulin-like receptor (KIR) family member in terms of its structure, expression, cellular localization, and signaling properties. The most conserved KIR in evolution, it is referred to as a framework KIR gene and is expressed by all natural killer (NK) cells and a subset of T cells. Although it has a long cytoplasmic tail that is typical of inhibitory KIR, engagement of this receptor results in the activation of NK cells, not for cytotoxicity, but for cytokine and chemokine secretion. Unlike all other KIRs, which are expressed on the surface of NK cells, KIR2DL4 resides in endosomes. It signals from this intracellular site for a proinflammatory and proangiogenic response, using a novel endosomal signaling pathway that involves the serine/threonine kinases DNA-PKcs and Akt. The only known ligand of KIR2DL4 is HLA-G. Soluble HLA-G accumulates in KIR2DL4(+) endosomes. Unlike classical HLA molecules that serve as ligands for other KIR family members, in healthy individuals, HLA-G expression is restricted to the fetal trophoblast cells that invade the maternal decidua during early pregnancy. Since NK cells constitute the predominant lymphocyte subset at this site, the proinflammatory/proangiogenic outcome of the interaction between KIR2DL4 and soluble HLA-G supports a role for KIR2DL4 in the extensive remodeling of the maternal vasculature during the early weeks of pregnancy.
    Frontiers in Immunology 08/2012; 3:258. DOI:10.3389/fimmu.2012.00258
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Restricted expression of human leucocyte antigen-G (HLA-G) to fetal extravillous trophoblast cells, which invade the decidua during implantation, suggests a role for HLA-G in placentation. In this study, we have investigated several aspects of HLA-G expression and function. Surface levels of HLA-G expression were measured in 70 normal pregnancies. We show the dimeric conformation that is unique to HLA-G forms after passage through the Golgi apparatus. Differences were found in the receptor repertoire of decidual natural killer (dNK) cells that express the leucocyte immunoglobulin-like receptor B1 (LILRB1), which binds dimeric HLA-G strongly. We then measured functional responses of dNK cells with LILRB1, when stimulated by HLA-G in both monomeric and dimeric conformations. Degranulation, interferon-γ and interleukin-8 production by dNK cells freshly isolated from the first trimester implantation site were either undetected or not affected by HLA-G. These findings should be considered when inferring the activity of tissue NK cells from results obtained with cell lines, peripheral NK or cultured dNK cells.
    Molecular Human Reproduction 04/2011; 17(9):577-86. DOI:10.1093/molehr/gar022 · 3.48 Impact Factor