Article

Cell biology of the human thiamine transporter-1 (hTHTR1) - Intracellular trafficking and membrane targeting mechanisms

Department of Neurobiology and Behavior, University of California, Irvine 92697, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2003; 278(6):3976-84. DOI: 10.1074/jbc.M210717200
Source: PubMed

ABSTRACT The human thiamine transporter hTHTR1 is involved in the cellular accumulation of thiamine (vitamin B1) in many tissues. Thiamine deficiency disorders, such as thiamine-responsive megaloblastic anemia (TRMA), which is associated with specific mutations within hTHTR1, likely impairs the functionality and/or intracellular targeting of hTHTR1. Unfortunately, nothing is known about the mechanisms that control the intracellular trafficking or membrane targeting of hTHTR1. To identify molecular determinants involved in hTHTR1 targeting, we generated a series of hTHTR1 truncations fused with the green fluorescent protein and imaged the targeting and trafficking dynamics of each construct in living duodenal epithelial cells. Whereas the full-length fusion protein was functionally expressed at the plasma membrane, analysis of the truncated mutants demonstrated an essential role for both NH(2)-terminal sequence and the integrity of the backbone polypeptide for cell surface expression. Most notably, truncation of hTHTR1 within a region where several TRMA truncations are clustered resulted in intracellular retention of the mutant protein. Finally, confocal imaging of the dynamics of intracellular hTHTR1 vesicles revealed a critical role for microtubules, but not microfilaments, in hTHTR1 trafficking. Taken together, these results correlate hTHTR1 structure with cellular expression profile and reveal a critical dependence on hTHTR1 backbone integrity and microtubule-based trafficking processes for functional expression of hTHTR1.

0 Followers
 · 
45 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The resurgence of interest in cancer metabolism has linked alterations in the regulation and exploitation of metabolic pathways with an anabolic phenotype that increases biomass production for the replication of new daughter cells. To support the increase in the metabolic rate of cancer cells, a coordinated increase in the supply of nutrients, such as glucose and micronutrients functioning as enzyme cofactors is required. The majority of co-enzymes are water-soluble vitamins such as niacin, folic acid, pantothenic acid, pyridoxine, biotin, riboflavin and thiamine (Vitamin B1). Continuous dietary intake of these micronutrients is essential for maintaining normal health. How cancer cells adaptively regulate cellular homeostasis of cofactors and how they can regulate expression and function of metabolic enzymes in cancer is underappreciated. Exploitation of cofactor-dependent metabolic pathways with the advent of anti-folates highlights the potential vulnerabilities and importance of vitamins in cancer biology. Vitamin supplementation products are easily accessible and patients often perceive them as safe and beneficial without full knowledge of their effects. Thus, understanding the significance of enzyme cofactors in cancer cell metabolism will provide for important dietary strategies and new molecular targets to reduce disease progression. Recent studies have demonstrated the significance of thiamine-dependent enzymes in cancer cell metabolism. Therefore, this review discusses the current knowledge in the alterations in thiamine availability, homeostasis, and exploitation of thiamine-dependent pathways by cancer cells.
    07/2013; 1(1). DOI:10.1186/2049-3002-1-16
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infections with enteric pathogens like enterotoxigenic Escherichia coli (ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and secreted ETEC component, and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of hTHTR-1 & -2 at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E.coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin, and is associated with a decrease in the expression of intestinal thiamin transporters.
    AJP Cell Physiology 10/2013; 305(11). DOI:10.1152/ajpcell.00276.2013 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thiamin is a water-soluble vitamin also known as vitamin B1. Its biologically active form, thiamin pyrophosphate (TPP), is a cofactor in macronutrient metabolism. In addition to its coenzyme roles, TPP plays a role in nerve structure and function as well as brain metabolism. Signs and symptoms of thiamin deficiency (TD) include lactic acidosis, peripheral neuropathy, ataxia, and ocular changes (eg, nystagmus). More advanced symptoms include confabulation and memory loss and/or psychosis, resulting in Wernicke's encephalopathy and/or Wernicke's Korsakoff syndrome, respectively. The nutrition support clinician should be aware of patients who may be at risk for TD. Risk factors include those patients with malnutrition due to 1 or more nutrition-related etiologies: decreased nutrient intake, increased nutrient losses, or impaired nutrient absorption. Clinical scenarios such as unexplained heart failure or lactic acidosis, renal failure with dialysis, alcoholism, starvation, hyperemesis gravidarum, or bariatric surgery may increase the risk for TD. Patients who are critically ill and require nutrition support may also be at risk for TD, especially those who are given intravenous dextrose void of thiamin repletion. Furthermore, understanding thiamin's role as a potential therapeutic agent for diabetes, some inborn errors of metabolism, and neurodegenerative diseases warrants further research. This tutorial describes the absorption, digestion, and metabolism of thiamin. Issues pertaining to thiamin in clinical practice will be described, and evidence-based practice suggestions for the prevention and treatment of TD will be discussed. © 2015 American Society for Parenteral and Enteral Nutrition.
    Journal of Parenteral and Enteral Nutrition 01/2015; DOI:10.1177/0148607114565245 · 3.14 Impact Factor

Full-text (2 Sources)

Download
25 Downloads
Available from
May 21, 2014