Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.

Departments of Molecular Biology and Genetics, Plant Biology, and Horticulture, Cornell University, Ithaca, NY 14853, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2003; 99(25):15898-903. DOI: 10.1073/pnas.252637799
Source: PubMed

ABSTRACT Trehalose is a nonreducing disaccharide of glucose that functions as a compatible solute in the stabilization of biological structures under abiotic stress in bacteria, fungi, and invertebrates. With the notable exception of the desiccation-tolerant "resurrection plants," trehalose is not thought to accumulate to detectable levels in most plants. We report here the regulated overexpression of Escherichia coli trehalose biosynthetic genes (otsA and otsB) as a fusion gene for manipulating abiotic stress tolerance in rice. The fusion gene has the advantages of necessitating only a single transformation event and a higher net catalytic efficiency for trehalose formation. The expression of the transgene was under the control of either tissue-specific or stress-dependent promoters. Compared with nontransgenic rice, several independent transgenic lines exhibited sustained plant growth, less photo-oxidative damage, and more favorable mineral balance under salt, drought, and low-temperature stress conditions. Depending on growth conditions, the transgenic rice plants accumulate trehalose at levels 3-10 times that of the nontransgenic controls. The observation that peak trehalose levels remain well below 1 mgg fresh weight indicates that the primary effect of trehalose is not as a compatible solute. Rather, increased trehalose accumulation correlates with higher soluble carbohydrate levels and an elevated capacity for photosynthesis under both stress and nonstress conditions, consistent with a suggested role in modulating sugar sensing and carbohydrate metabolism. These findings demonstrate the feasibility of engineering rice for increased tolerance of abiotic stress and enhanced productivity through tissue-specific or stress-dependent overproduction of trehalose.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study presents an analysis of leave and rood morphology, biochemical and proteomics approach as adaptation strategies of the alpine plant Potentilla saundersiana in an altitude gradient. Several plant physiological parameter, including root and leaf architecture, leaf photosynthesis capacity, specific leaf area (SLA) and leaf nitrogen concentration, histology and microscopy, anthocyanin and proline contents, antioxidant enzyme activity assay, in-gel enzyme activity staining, H2O2 and O2(-) content, immunoblotting, auxin and strigolactone content and proteomics analysis were evaluated at five different altitudes. P. saundersiana modulated the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress through mechanisms that involved hormone synthesis and signal transduction, particularly the cross-talk between auxin and strigolactone. Furthermore, an increase of antioxidant proteins and primary metabolites as a response to the alpine environment in P. saundersiana was observed. Proteins associated with the epigenetic regulation of DNA stability and post-translational protein degradation was also involved in this process. Based on these findings, P. saundersiana uses multiple strategies to adapt to the high-altitude environment of the Alpine region.
    Journal of proteomics. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drought is one of the major abiotic stresses that affect productivity in soybean (Glycine max L.) Several genes induced by drought stress include functional genes and regulatory transcription factors. The Arabidopsis thaliana DREB1D transcription factor driven by the constitutive and ABA-inducible promoters was introduced into soybean through Agrobacterium tumefaciens-mediated gene transfer. Several transgenic lines were generated and molecular analysis was performed to confirm transgene integration. Transgenic plants with an ABA-inducible promoter showed a 1.5- to two-fold increase of transgene expression under severe stress conditions. Under well-watered conditions, transgenic plants with constitutive and ABA-inducible promoters showed reduced total leaf area and shoot biomass compared to non-transgenic plants. No significant differences in root length or root biomass were observed between transgenic and non-transgenic plants under non-stress conditions. When subjected to gradual water deficit, transgenic plants maintained higher relative water content because the transgenic lines used water more slowly as a result of reduced total leaf area. This caused them to wilt slower than non-transgenic plants. Transgenic plants showed differential drought tolerance responses with a significantly higher survival rate compared to non-transgenic plants when subjected to comparable severe water-deficit conditions. Moreover, the transgenic plants also showed improved drought tolerance by maintaining 17-24 % greater leaf cell membrane stability compared to non-transgenic plants. The results demonstrate the feasibility of engineering soybean for enhanced drought tolerance by expressing stress-responsive genes.
    Molecular Biology Reports 09/2014; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cultivated rice consists of two important ecotypes, upland and irrigated, that have respectively adapted to either dry land or irrigated cultivation. Upland rice, widely adopted in rainfed upland areas in virtue of its little water requirement, contains abundant untapped genetic resources, such as genes for drought adaptation. With water shortage exacerbated and population expanding, the need for breeding crop varieties with drought adaptation becomes more and more urgent. However, a previous oversight in upland rice research reveals little information regarding its genetic mechanisms for upland adaption, greatly hindering progress in harnessing its genetic resources for breeding and cultivation.
    BMC Plant Biology 06/2014; 14(1):160. · 4.35 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014