Article

Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry

Centre National de Génotypage, Évry-Petit-Bourg, Île-de-France, France
Journal of Chromatography B (Impact Factor: 2.69). 01/2003; 782(1-2):73-87. DOI: 10.1016/S1570-0232(02)00692-X
Source: PubMed

ABSTRACT In recent years matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) has emerged as a very powerful method for genotyping single nucleotide polymorphisms. The accuracy, speed of data accumulation, and data structure are the major features of MALDI. Several SNP genotyping methods have been implemented with a high degree of automation and are being applied for large-scale association studies. Most methods for SNP genotyping using MALDI mass spectrometric detection and their potential application for high-throughput are reviewed here.

0 Followers
 · 
65 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several mRNA markers have been exhaustively evaluated for the identification of human venous blood, saliva, and semen in forensic genetics. As new candidate human body fluid specific markers are discovered, evaluated, and reported in the scientific literature, there is an increasing trend toward determining the ideal markers for cDNA profiling of body fluids of forensic interest. However, it has not been determined which molecular genetics-based technique(s) should be utilized to assess the performance of these markers. In recent years, only a few confirmatory, mRNA/cDNA-based methods have been evaluated for applications in body fluid identification. The most frequently described methods tested to date include quantitative polymerase chain reaction (qPCR) and capillary electrophoresis (CE). However these methods, in particular qPCR, often favor narrow multiplex PCR due to the availability of a limited number of fluorescent dyes/tags. In an attempt to address this technological constraint, this study explored matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for human body fluid identification via cDNA profiling of venous blood, saliva, and semen. Using cDNA samples at 20 pg input Phosphoglycerate Kinase 1 (PGK1) amounts, body fluid specific markers for the candidate genes were amplified in their corresponding body fluid (i.e., venous blood, saliva, or semen) and absent in the remaining two (100% specificity). The results of this study provide an initial indication that MALDI-TOF MS is a potential fluorescent dye-free alternative method for body fluid identification in forensic casework. However, the inherent issues of low amounts of mRNA, and the damage caused to mRNA by environmental exposures, extraction processes, and storage conditions are important factors that significantly hinder the implementation of cDNA profiling into forensic casework.
    Forensic Science International: Genetics 01/2015; 16C. DOI:10.1016/j.fsigen.2014.12.008 · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uruguay exhibits one of the highest rates of breast cancer in Latin America, similar to those of developed nations, the reasons for which are not completely understood. In this study we investigated the effect that ancestral background has on breast cancer susceptibility among Uruguayan women. We carried out a case-control study of 328 (164 cases, 164 controls) women enrolled in public hospitals and private clinics across the country. We estimated ancestral proportions using a panel of nuclear and mitochondrial ancestry informative markers (AIMs) and tested their association with breast cancer risk. Nuclear individual ancestry in cases was (mean ± SD) 9.8 ± 7.6% African, 13.2 ± 10.2% Native American and 77.1 ± 13.1% European, and in controls 9.1 ± 7.5% African, 14.7 ± 11.2% Native American and 76.2 ± 14.2% European. There was no evidence of a difference in nuclear or mitochondrial ancestry between cases and controls. However, European mitochondrial haplogroup H was associated with breast cancer (OR = 2.0; 95% CI 1.1, 3.5). We have not found evidence that overall genetic ancestry differs between breast cancer patients and controls in Uruguay but we detected an association of the disease with a European mitochondrial lineage, which warrants further investigation.
    BMC Women's Health 12/2015; 15(1). DOI:10.1186/s12905-015-0171-8 · 1.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Cryptosporidium infects millions of people worldwide causing acute gastroenteritis, but despite its remarkable epidemiological and economic impact, information on the epidemiological trends of human cryptosporidiosis is still scarce in most countries. Here we investigate a panel of 486 cases collected in Galicia (NW Iberian Peninsula) between 2000 and 2008, which sheds new light on the epidemiology in this region of the South Atlantic European façade. Incidence rates in Galicia are one order of magnitude higher than those reported in other regions of Spain, suggesting that this parasite remains largely underdiagnosed in this country, and are also larger than those typical of other European countries with available data. Two species dominate our dataset, Cryptosporidium hominis (65%) and C. parvum (34%). The sex ratio of patients infected by either species was 0·5, but C. hominis was significantly more common in younger males. C. parvum infections were more acute and required more specialized medical attention, which suggests a differential adaptation of each species to human hosts. The parasites display strong seasonal and geographical variation. C. parvum incidence peaked during summer and was mainly detected in rural areas while C. hominis infections were more frequent in autumn and exhibited a more even geographical distribution. Such differences probably reflect their distinct sources of infection - C. parvum is mainly zoonotic and C. hominis anthroponotic - and the effects of climatic variables, like temperature and rainfall.
    Epidemiology and Infection 02/2015; DOI:10.1017/S0950268815000163 · 2.49 Impact Factor

Sascha Sauer