Altered performance of forest pests under atmospheres enriched by CO2 and O3.

Natural Resources Canada, Canadian Forest Service-Atlantic Forestry Centre, Fredericton, New Brunswick, E3B 5P7, Canada.
Nature (Impact Factor: 42.35). 12/2002; 420(6914):403-7. DOI: 10.1038/nature01028
Source: PubMed

ABSTRACT Human activity causes increasing background concentrations of the greenhouse gases CO2 and O3. Increased levels of CO2 can be found in all terrestrial ecosystems. Damaging O3 concentrations currently occur over 29% of the world's temperate and subpolar forests but are predicted to affect fully 60% by 2100 (ref. 3). Although individual effects of CO2 and O3 on vegetation have been widely investigated, very little is known about their interaction, and long-term studies on mature trees and higher trophic levels are extremely rare. Here we present evidence from the most widely distributed North American tree species, Populus tremuloides, showing that CO2 and O3, singly and in combination, affected productivity, physical and chemical leaf defences and, because of changes in plant quality, insect and disease populations. Our data show that feedbacks to plant growth from changes induced by CO2 and O3 in plant quality and pest performance are likely. Assessments of global change effects on forest ecosystems must therefore consider the interacting effects of CO2 and O3 on plant performance, as well as the implications of increased pest activity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated levels of CO2 and O3 affect plant growth and phytochemistry, which in turn can alter physiological performance of associated herbivores. Little is known, however, about how generalist insect herbivores respond behaviorally to CO2- and O3-mediated changes in their host plants. This research examined the effects of elevated CO2 and O3 levels on host plant preferences and consumption of forest tent caterpillar (FTC, Malacosoma disstria Hbn.) larvae. Dual choice feeding assays were performed with foliage from birch (Betula papyrifera Marsh.) and aspen (Populus tremuloides Michx., genotypes 216 and 259). Trees were grown at the Aspen Free Air CO2 Enrichment (FACE) facility near Rhinelander, WI, USA, and had been exposed to ambient or elevated concentrations of CO2 and/or O3. Levels of nutritional and secondary compounds were quantified through phytochemical analyses. The results showed that elevated O3 levels increased FTC larval preferences for birch compared with aspen, whereas elevated CO2 levels had the opposite effect. In assays with the two aspen genotypes, addition of both CO2 and O3 caused a shift in feeding preferences from genotype 259 to genotype 216. Consumption was unaffected by experimental treatments in assays comparing aspen and birch, but were increased for larvae given high O3 foliage in the aspen genotype assays. Elevated levels of CO2 and O3 altered tree phytochemistry, but did not explain shifts in feeding preferences. The results demonstrate that increased levels of CO2 and O3 can alter insect host plant preferences both between and within tree species. Also, consequences of altered host quality (e.g., compensatory consumption) may be buffered by partial host shifts in situations when alternative plant species are available. Environmentally induced changes in host plant preferences may have the potential to alter the distribution of herbivory across plant genotypes and species, as well as competitive interactions among them.
    Global Change Biology 04/2005; 11(4). · 8.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The individual and combined effects of elevated CO2 and O3 on the foliar chemistry of silver birch (Betula pendula Roth) and on the performance of five potential birch-defoliating insect herbivore species (two geometrid moths, one lymantrid moth and two weevils) were examined. Elevated CO2 decreased the water concentration in both short- and long-shoot leaves, but the effect of CO2 on the concentration of nitrogen and individual phenolic compounds was mediated by O3 treatment, tree genotype and leaf type. Elevated O3 increased the total carbon concentration only in short-shoot leaves. Bioassays showed that elevated CO2 increased the food consumption rate of juvenile Epirrita autumnata and Rheumaptera hastata larvae fed with short- and long-shoot leaves in spring and mid-summer, respectively, but had no effect on the growth of larvae. The contribution of leaf quality variables to the observed CO2 effects indicate that insect compensatory consumption may be related to leaf age. Elevated CO2 increased the food preference of only two tested species: Phyllobius argentatus (CO2 alone) and R. hastata (CO2 combined with O3). The observed stimulus was dependent on tree genotype and the measured leaf quality variables explained only a portion of the stimulus. Elevated O3 decreased the growth of flush-feeding young E. autumnata larvae, irrespective of CO2 concentration, apparently via reductions in general food quality. Therefore, the increasing tropospheric O3 concentration could pose a health risk for juvenile early-season birch folivores in future. In conclusion, the effects of elevated O3 were found to be detrimental to the performance of early-season insect herbivores in birch whereas elevated CO2 had only minor effects on insect performance despite changes in food quality related foliar chemistry.
    Global Change Biology 03/2010; 16(3). · 8.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Four major diseases of chili pepper including two fungal diseases, anthracnose (Colletotrichum acutatum) and Phytophthora blight (Phytophthora capsici), and two bacterial diseases, bacterial wilt (Ralstonia solanacearum) and bacterial spot (Xanthomonas campestris pv. vesicatoria), were investigated under future climate-change condition treatments in growth chambers. Treatments with elevated and temperature were maintained at and , whereas ambient conditions were maintained at and . Pepper seedlings or fruits were infected with each pathogen, and then the disease progress was evaluated in the growth chambers. According to paired t-test analyses, bacterial wilt and spot diseases significantly increased by 24% (p=0.008) and 25% (p=0.016), respectively, with elevated and temperature conditions. On the other hand, neither Phytophthora blight (p=0.906) nor anthracnose (p=0.125) was statistically significant. The elevated and temperature accelerated the progress of bacterial wilt by two days and bacterial spot by one day compared to the ambient treatment. Temperature regime studies of the diseases without changes in confirmed that the accelerated bacterial disease progress was mainly due to the increased temperature rather than the elevated conditions.
    The plant pathology journal 06/2010; 26(2). · 0.76 Impact Factor

Full-text (3 Sources)

Available from
Jun 3, 2014