Do inflammatory cells participate in mammary gland involution?

Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA.
Journal of Mammary Gland Biology and Neoplasia (Impact Factor: 5). 05/2002; 7(2):163-76. DOI: 10.1023/A:1020351919634
Source: PubMed

ABSTRACT The processes by which the involuting mammary gland clears residual milk and milk fat, as well as apoptotic cells, have gone largely unstudied in the modern literature. Here we review the evidence for and against the involvement of professional phagocytes of hematopoietic lineage in this process. Additionally we present evidence that mammary epithelial cells themselves are capable of phagocytosis and may be responsible for the majority of apoptotic cell and residual milk clearance during murine involution. In this scheme these cells regulate their cytokine production in response to apoptotic cells in a manner similar to other cells, including macrophages. The ensuing model describes a process of involution that actively suppresses an inflammatory response in the gland, allowing for effective tissue remodeling and damage prevention.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transition from the lactation to the dry period in dairy cows is a period of high risk for acquiring new intramammary infections. This risk is reduced when involution of mammary glands is completed. Consequently, strategies that accelerate the involution process after drying-off could reduce the incidence of mastitis. The objective of this study was to assess the effect of 3 different treatments on mammary gland involution. Each quarter of 8 Holstein cows in late lactation was randomly assigned at drying-off to an intramammary infusion of casein hydrolysate (CNH; 70 mg), ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA; 5.7 g), lactose (5.1 g), or saline 0.9% (control) solutions. Milk samples were collected on the last 2 d before and 1, 3, 5, 7, 10, and 14 d after the last milking for determining concentrations of mammary gland involution markers. Lactoferrin, somatic cell counts (SCC), BSA, and Na(+) concentrations, as well as matrix metalloproteinase-2 and -9 activities gradually increased in mammary secretions during the first 2 wk following the last milking, whereas milk citrate and K(+) concentrations decreased. As involution advanced, the Na(+):K(+) ratio increased, whereas the citrate:lactoferrin ratio decreased. Compared with mammary secretions from control quarters, mammary secretions of quarters infused with CNH had higher SCC on d 1, 3, 5, and 7, and greater BSA concentrations on d 1, 3, and 5. Similarly, the CNH treatment induced a faster increase in lactoferrin concentrations, which were greater than in milk from control quarters on d 3, 5, and 7 after drying-off. Milk citrate concentrations were unaffected by CNH but the citrate:lactoferrin ratio was lower in CNH-treated quarters on d 3 and 5 than in control quarters. Moreover, CNH treatment hastened the increase in Na(+) concentration and in the Na(+):K(+) ratio on d 1. Infusion of CNH also led to an increase in proteolytic activities, with greater matrix metalloproteinase 9 activities on d 1 and 3. The EGTA infusion increased SCC above that of control quarters on d 1 and 3 but it had no effect on the other parameters. Lactose infusion had no effect on any of the involution markers. In this study, intramammary infusions of CNH were the most efficient treatment to accelerate mammary gland involution, suggesting a potential role of CNH as a local milk secretion inhibitor during milk stasis.
    Journal of Dairy Science 12/2014; 97(2):779-788. DOI:10.3168/jds.2013-7062 · 2.55 Impact Factor
  • Source