Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals.

Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, Texas 77843, USA.
Cells Tissues Organs (Impact Factor: 2.14). 02/2002; 172(3):202-17. DOI: 10.1159/000066969
Source: PubMed

ABSTRACT Establishment of pregnancy in mammals requires coordinated conceptus-maternal interactions involving numerous hormones, growth factors and cytokines acting via specific receptors in the uterus. Uterine secretions play an important role in establishing synchrony between development of the conceptus and uterine receptivity, as well as in conceptus remodeling, adhesion, implantation and placentation in domestic species. Studies of non-invasive implantation in domestic livestock provide valuable opportunities to investigate fundamental processes of the initial events of apposition, attachment and adhesive interactions that are shared among species. In pigs and sheep, it appears that integrins play a dominant role in these fundamental processes via interactions with extracellular matrix molecules and other ligands to transduce cellular signals in uterine epithelial cells and conceptus trophectoderm. This review considers several of the potential integrin-binding ligands involved in the complex implantation adhesion cascade in pigs and sheep along with in vitro evidence for the transduction of cytoplasmic signals that may be required to sustain fetal and maternal contributions to the formation of the epitheliochorial placenta.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary Prenatal losses are a complex problem. Pregnancy requires orchestrated communication between the embryo and the uterus that includes secretions from the embryo to signal pregnancy recognition and secretion and remodelling from the uterine epithelium. Most of these losses are characterized by asynchronization between embryo and uterus. To better understand possible causes, an analysis was conducted of gene expression of a set of transcripts related to maternal recognition and establishment of rabbit pregnancy (uteroglobin, SCGB1A1; integrin α1, ITGA1; interferon-γ, IFNG; vascular endothelial growth factor, VEGF) in oviduct and uterine tissue at 16, 72 or 144 h post-ovulation and insemination. In the oviduct tissue, a significant decrease in the level of SCGB1A1 mRNA expression was observed from 144 h post-ovulation. In the case of ITGA1, the transcript abundance was initially lower, but mRNA expression increased significantly at 72 and 144 h post-ovulation. For IFNG, a huge decrease was observed from 16 to 72 h post-ovulation. Finally, no significant differences were observed in the VEGF transcript. For the endometrium, the results showed a significant decline in the level of SCGB1A1 mRNA expression from 16 to 144 h post-ovulation induction. The highest levels of ITGA1 transcript were detected at 144 h, followed by the 16 h group and lower at 72 h post-ovulation. For IFNG there were no significant differences among post-ovulation induction times. Finally, it was possible to observe that VEGF mRNA abundance was present at low levels at 16 h post-ovulation and remained low at 72 h, but increased at 144 h. The functional significance of these observations may provide new insights into the maternal role in prenatal losses.
    Zygote 11/2013; DOI:10.1017/S0967199413000555 · 1.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Establishment of pregnancy in pigs requires continuous function of corpora lutea and endometrial preparation for embryo implantation. Progesterone regulates expression of many proteins necessary for endometrial remodelling and embryo-maternal communications. Attaining the uterine receptivity involves progesterone priming and loss of progesterone receptors in the uterine epithelium before days 10-12 after oestrus. Spermatozoa and oocytes in oviduct alter secretion of specific proteins that exert beneficial effect on gametes and embryos. Moreover, an appropriate leucocyte activation and maintenance of delicate cytokine balance within the oviduct and uterus are important for early pregnancy. This early local immune response is rather mediated by seminal plasma components. These components also influence prostaglandin (PG) synthesis in the oviduct that is important for gamete and embryo transport. Pregnancy establishment requires the biphasic pattern of oestrogen secretion by conceptuses on days 11-12 and 15-30. Conceptus affects lipid signalling system consisting of prostaglandins and lysophosphatic acid. PG synthesis is changed by conceptus signals in favour of luteoprotective PGE(2) . Additionally, existence of PGE(2) positive feedback loop in the endometrium contributes to increased PGE(2) /PGF(2α) ratio during the peri-implantation period. PGE(2) through endometrial PGE(2) receptor (PTGER2) elevates the expression of enzymes involved in PGE(2) synthesis. Higher PGE(2) secretion in uterine lumen coincides with the elevated expression of HOXA10 transcription factor critical for implantation. A stable adhesion between conceptus and endometrium requires reduction in mucin-1 on the apical surface of epithelium and integrin activation by extracellular matrix proteins. Furthermore, growth factors, cytokines and its receptors are involved in embryo-maternal interactions.
    Reproduction in Domestic Animals 09/2011; 46 Suppl 3:31-41. DOI:10.1111/j.1439-0531.2011.01843.x · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pig exhibits true epitheliochorial placentation, where the fetal membrane maintains attachment throughout pregnancy but does not invade into the maternal uterine endometrium. Accordingly, the expression and function of cell adhesion molecules are very important for embryo implantation and the establishment of pregnancy. In our recent microarray analysis, we found that activated leukocyte cell adhesion molecule (ALCAM) was expressed in the uterine endometrium during pregnancy in pigs. To better understand the roles of ALCAM in the establishment and maintenance of pregnancy, we examined ALCAM expression in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that ALCAM was differentially expressed in the uterine endometrium during the estrous cycle and pregnancy, with the highest levels on D12 of pregnancy. ALCAM mRNA was localized to the luminal and glandular epithelial cells and to the trophectoderm of conceptuses during early pregnancy. The steroid hormones estrogen and progesterone had no effect on ALCAM expression in an endometrial explant culture study. Further, we found that ALCAM expression in the uterine endometrium from gilts with somatic cell nuclear transfer-derived embryos was not different from that in gilts with embryos from natural mating. ALCAM was expressed in a pregnancy stage- and cell type-specific manner in the uterine endometrium and conceptuses during pregnancy. These findings suggest that ALCAM may play a role in the establishment of pregnancy. Further analysis of ALCAM will provide insight into the implantation process and establishment of pregnancy in pigs.
    Asian Australasian Journal of Animal Sciences 07/2011; 24(7). DOI:10.5713/ajas.2011.11033 · 0.56 Impact Factor