Article

The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration.

Department of Molecular Genetics, University of Illinois College of Medicine, 900 South Ashland Avenue, Chicago, IL 60607, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2003; 99(26):16881-6. DOI: 10.1073/pnas.252570299
Source: PubMed

ABSTRACT The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and whose members play essential roles in cellular proliferation, differentiation, transformation, longevity, and metabolic homeostasis. Liver regeneration studies with transgenic mice demonstrated that FoxM1B regulates the onset of hepatocyte DNA replication and mitosis by stimulating expression of cell cycle genes. Here, we demonstrate that albumin-promoter-driven Cre recombinase-mediated hepatocyte-specific deletion of the Foxm1b Floxed (fl) targeted allele resulted in significant reduction in hepatocyte DNA replication and inhibition of mitosis after partial hepatectomy. Reduced DNA replication in regenerating Foxm1b(-/-) hepatocytes was associated with sustained increase in nuclear staining of the cyclin-dependent kinase (Cdk) inhibitor p21(Cip1) (p21) protein between 24 and 40 h after partial hepatectomy. Furthermore, increased nuclear p21 levels and reduced expression of Cdc25A phosphatase coincided with decreases in Cdk2 activation and hepatocyte progression into S-phase. Moreover, the significant reduction in hepatocyte mitosis was associated with diminished mRNA levels and nuclear expression of Cdc25B phosphatase and delayed accumulation of cyclin B1 protein, which is required for Cdk1 activation and entry into mitosis. Cotransfection studies demonstrate that FoxM1B protein directly activated transcription of the Cdc25B promoter region. Our present study shows that the mammalian Foxm1b transcription factor regulates expression of cell cycle proteins essential for hepatocyte entry into DNA replication and mitosis.

0 Bookmarks
 · 
68 Views
  • Hepatology 12/2003; 38(6):1331-1347. DOI:10.1053/jhep.2003.09034 · 11.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and the members of which play essential roles in cellular proliferation, differentiation, and longevity. Reduced cellular proliferation during aging is associated with a progressive decline in both growth hormone (GH) secretion and Foxm1b expression. Liver regeneration studies with 12-month-old (old-aged) transgenic mice indicated that increased hepatocyte expression of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver. GH therapy in older people has been shown to cause an increase in cellular proliferation, but the transcription factors that mediated this stimulation in proliferation remain uncharacterized. In this study, we showed that human GH administration to old-aged Balb/c mice dramatically increased both expression of Foxm1b and regenerating hepatocyte proliferation. This increase in old-aged regenerating hepatocyte proliferation was associated with elevated protein expression of Cdc25A, Cdc25B, and cyclin B1, with reduced protein levels of cyclin-dependent kinase inhibitor p27Kip1 (p27). GH treatment also was found to stimulate hepatocyte proliferation and expression of Foxm1b protein without partial hepatectomy (PHx). Furthermore, GH treatment of young Foxm1b −/− mice failed to restore regenerating hepatocyte DNA replication and mitosis caused by Foxm1b deficiency. These genetic studies provided strong evidence that the presence of Foxm1b is essential for GH to stimulate regenerating hepatocyte proliferation. In conclusion, our old-aged liver regeneration studies show that increased Foxm1b levels are essential for GH to stimulate hepatocyte proliferation, thus providing a mechanism for GH action in the elderly. (Hepatology 2003;38:1552-1562.)
    Hepatology 12/2003; 38(6):1552-1562. DOI:10.1053/jhep.2003.08052 · 11.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All-trans retinoic acid (RA) is a potent inducer of regeneration. Because the liver is the principal site for storage and bioactivation of vitamin A, the current study examines the effect of RA in mouse hepatocyte proliferation and liver regeneration. Mice that received a single dose of RA (25μg/g) by oral gavage developed hepatomegaly with increased number of Ki67-positive cells and induced expression of cell cycle genes in the liver. DNA binding data revealed that RA receptors retinoic acid receptor β (RARβ) and retinoid x receptor α (RXRα) bound to cell cycle genes Cdk1, Cdk2, Cyclin B, Cyclin E, and Cdc25a in mice with and without RA treatment. In addition, RA treatment induced novel binding of RARβ/RXRα to Cdk1, Cdk2, Cyclin D, and Cdk6 genes. All RARβ/RXRα binding sites contained AGGTCA-like motifs. RA treatment also promoted liver regeneration after partial hepatectomy (PH). RA signaling was implicated in normal liver regeneration as the mRNA levels of RARβ, Aldh1a2, Crabp1, and Crbp1 were all induced 1.5 days after PH during the active phase of hepatocyte proliferation. RA treatment prior to PH resulted in early up-regulation of RARβ, Aldh1a2, Crabp1, and Crbp1, which was accompanied by an early induction of cell cycle genes. Western blotting for RARβ, c-myc, Cyclin D, E, and A further supported the early induction of retinoid signal and cell proliferation by RA treatment. Taken together, our data suggest that RA may regulate cell cycle progression and accelerates liver regeneration. Such effect is associated with an early induction of RA signaling, which includes increased expression of the receptor, binding proteins, and processing enzyme for retinoids.
    Biochemical Pharmacology 09/2014; DOI:10.1016/j.bcp.2014.07.003. · 4.65 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
May 28, 2014