Beta-adrenergic receptor activation inhibits keratinocyte migration via a cyclic adenosine monophosphate-independent mechanism.

Department of Medicine, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, CA 95616, USA.
Journal of Investigative Dermatology (Impact Factor: 6.37). 01/2003; 119(6):1261-8. DOI: 10.1046/j.1523-1747.2002.19611.x
Source: PubMed

ABSTRACT There is increasing evidence that G-protein-coupled receptors cross-talk with growth factor receptor-mediated signal transduction in a variety of cell types. We have investigated mechanisms by which the activation of beta-adrenergic receptors, classically GTP-binding proteins coupled receptors, influence the migration of cultured human keratinocytes. We found that iso-proterenol, a beta-adrenergic receptor-selective agonist, inhibited cell migration stimulated by either epidermal growth factor, or extracellular Ca2+ in a concentration-dependent manner. This was prevented by pretreatment of the cells with the beta-adrenergic receptor-selective antagonist timolol. Interestingly, isoproterenol, at a concentration of 1 nm, did not measurably increase intracellular cyclic adenosine monophosphate concentrations yet inhibited cell migration by 50%. To test further if isoproterenol's actions were mediated via activation of adenylyl cyclase, two inhibitors of its activity, 2'5'-dideoxyadenosine and SQ22536, were used. Both compounds significantly diminished iso-proterenol-induced increases in intracellular cyclic adenosine monophosphate concentrations but did not attenuate isoproterenol-induced inhibition of cell migration. Also, forskolin (1 microm) markedly increased intracellular cyclic adenosine monophosphate concentrations but did not significantly inhibit cell migration. As mitogen-activated protein kinases are known to signal growth factor-stimulated cell migration, we examined whether beta-adrenergic receptor-mediated inhibition of keratinocyte migration might occur via inactivation of mitogen-activated protein kinases. We found that isoproterenol inhibited phosphorylation of extracellular signal-regulated kinase mitogen-activated protein kinase in a concentration-dependent manner but had no effect on the phosphorylation of the stress mitogen-activated protein kinases c-jun N-terminal kinase and stress-activated protein kinase-2. Neither forskolin nor a membrane permeable cyclic adenosine monophosphate analog inhibited phosphorylation of any of these mitogen-activated protein kinases. These findings suggest that beta-adrenergic receptor-induced inhibition of keratinocyte migration is mediated through inhibition of the extracellular signal-regulated kinase mitogen-activated protein kinase signaling in a cyclic adenosine monophosphate-independent manner.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin, a multifunctional neurohormone synthesized and secreted by the pineal gland in circadian manner with an elevation during darkness, acts for an organism as a source of information on external lighting conditions. In non-mammalian vertebrates including birds the pineal gland plays an important role as one of the oscillators of the circadian system, as it possesses functions of photoreceptor, circadian clock and a site of melatonin synthesis. Melatonin originates also from extra-pineal tissues (e.g. bone marrow and gastrointestinal tract) where its synthesis is not related with lighting conditions. Besides, melatonin exhibits also a potent free-radical scavenging and antioxidant activity suggesting its important role in the protection against the oxidative stress. Avian embryo, developing in the conditions creating oxidative stress, has to be protected against oxidative damages by the presence of antioxidants and free radical scavengers deposed in the yolk. Melatonin function in the avian embryo antioxidative protection was not examined to date but there are some indications that it is produced/deposed in the freshly laid eggs of Japanese quail. Namely, melatonin receptor gene expression along with that of AA-NAT, a key enzyme in melatonin biosynthesis, has been demonstrated in the developing embryo of this species. Possible role played by melatonin from the egg yolk and early embryo is discussed.
    Experimental Endocrinology and Reproductive Biology, Edited by Chandana Haldar, M. Singaravel, S.R. Pandi-Perumal, Daniel P. Cardinali, 01/2008: chapter SECTION III: Developmental Endocrinology; CHAPTER 1: pages 171-186; Enfield, NH: Science Publishers., ISBN: 978-1-57808-518-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress-induced disruption of hormonal balance in animals and humans has a detrimental effect on wound healing. After the injury, keratinocytes migrate over the wound bed to repair a wound. However, their nonmigratory phenotype plays a role in pathogenesis of chronic wounds. Despite many therapeutic approaches, there is a dearth of treatments targeting the molecular mechanisms mediated by stress that prevent epithelization. Recent studies show that epidermal keratinocytes synthesize stress hormones. During acute wound healing, cortisol synthesis in the epidermis is tightly controlled. Further, a key intermediate molecule in the cholesterol synthesis pathway, farnesyl pyrophosphate (FPP), can bind glucocorticoid receptor (GR) and activate GR. Additionally, keratinocytes express beta-2-adrenergic-receptor (β2AR), a receptor for the stress hormone epinephrine. Importantly, migratory rates of keratinocytes are reduced by cortisol, FPP, epinephrine, and other β2AR agonists, thus indicating their role in the inhibition of epithelization. Topical inhibition of local glucocorticoid and FPP synthesis, as well as treatment with β2AR antagonists promotes wound epithelization. Modulation of local stress hormone production may represent an important therapeutic target for wound healing disorders. Topical administration of inhibitors of cortisol synthesis, statins, β2AR antagonists, and systemic beta-blockers can decrease cortisol synthesis, FPP, and epinephrine levels, respectively, thus restoring keratinocyte migration capacity. These treatment modalities could represent a novel therapeutic approach for wound healing disorders. Attenuation of the local stress-induced hormonal imbalance in epidermis may advance therapeutic modalities, thereby leading to enhanced epithelization and improved wound healing.
    Advances in wound care. 02/2012; 1(1):29-35.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies demonstrate that skin wounds generate epinephrine (EPI) that can activate local adrenergic receptors (ARs), impairing healing. Bacterially derived activators of Toll-like receptors (TLRs) within the wound initiate inflammatory responses and can also impair healing. In this study, we examined the hypothesis that these two pathways crosstalk to one another, using EPI and macrophage-activating lipopeptide-2 (MALP2) to activate ARs and TLR2, respectively, in human bone marrow-derived mesenchymal stem cells (BM-MSCs) and neonatal keratinocytes (NHKs). BM-MSCs exposed to EPI significantly (p < .05) increased TLR2 message (sevenfold BM-MSCs), TLR2 protein (twofold), and myeloid differentiation factor 88 (MyD88) (fourfold). Conversely, activation of TLR2 by MALP2 in these cells increased β2-AR message (twofold in BM-MSCs, 2.7-fold in NHKs), β2-AR protein (2.5-fold), phosphorylation of β-AR-activated kinase (p-BARK, twofold), and induced release of EPI from both cell types (twofold). Treating cells with EPI and MALP2 together, as would be encountered in a wound, increased β2-AR and p-BARK protein expression (sixfold), impaired cell migration (BM-MSCs- 21%↓ and NHKs- 60%↓, p < .002), and resulted in a 10-fold (BM-MSCs) and 51-fold (NHKs) increase in release of IL-6 (p < .001) responses that were remarkably reduced by pretreatment with β2-AR antagonists. In vivo, EPI-stressed animals exhibited impaired healing, with elevated levels of TLR2, MyD88, and IL-6 in the wounds (p < .05) relative to nonstressed controls. Thus, our data describe a recipe for decreasing cell migration and exacerbating inflammation via novel crosstalk between the adrenergic and Toll-like receptor pathways in BM-MSCs and NHKs.
    STEM CELLS TRANSLATIONAL MEDICINE 04/2014; · 3.60 Impact Factor