Pineal melatonin synthesis and release are not altered throughout the estrous cycle in female rats

University of Strasbourg, Strasburg, Alsace, France
Journal of Pineal Research (Impact Factor: 7.81). 02/2003; 34(1):53-9. DOI: 10.1034/j.1600-079X.2003.02952.x
Source: PubMed

ABSTRACT Melatonin times reproduction with seasons in many photoperiodic mammalian species. Whether sexual hormones reflect on melatonin synthesis is still debated. The aim of this work was to study, using a large panel of technical approaches, whether the daily profile of pineal melatonin synthesis and release varies with the estrous cycle in the female rat. The mRNA levels and enzyme activities of the melatonin synthesizing enzymes, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase were similar at the four stages of the rat estrous cycle. The endogenous release of melatonin, followed by transpineal microdialysis during six consecutive days in cycling female rats, displayed no significant variation during this interval. Taken together, the present results demonstrate that there is no regular fluctuation in the pineal metabolism leading to melatonin synthesis and release throughout the estrous cycle in female rats.


Available from: Jose Cipolla-Neto, Jun 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
    Pharmacological Reviews 07/2003; 55(2):325-95. DOI:10.1124/pr.55.2.2 · 18.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current study was conducted to investigate the relationship between melatonin and chronic anovulation. Adult (3-4 months old) female Wistar rats were submitted to pinealectomy: group I: pinealectomized ovariectomized melatonin-treated (N = 10); group II: pinealectomized ovariectomized placebo-treated (N = 12); group III: pinealectomized light-treated placebo-treated (N = 10) or maintained under continuous light; group IV: maintained under continuous light, ovariectomized melatonin-treated (N = 22); group V: maintained under continuous light, ovariectomized placebo-treated (N = 10); group VI: maintained under continuous light placebo-treated (N = 10). In order to assess ovarian modifications, unilateral ovariectomy was performed during the fourth month in groups I, II, IV, V and the other ovary was removed after 8 months. Ovariectomy was performed in groups III and VI only after eight months. Melatonin (200 micro g/100 g body weight) dissolved in 0.02 ml absolute ethanol was injected intramuscularly daily during the last 4 months into groups I and IV. The other groups were treated with placebo (NaCl). The ovarian cysts were analyzed and their area, perimeter and maximum diameter, as well as the thickness of the ovarian capsule were measured. Daily colpocytological smears were performed throughout the study. Persistent estrous condition and ovarian cysts were observed in all groups. In pinealectomized rats the ovarian and vaginal alterations disappeared at the end of the study and in rats maintained under continuous light the vaginal and ovarian polycystic aspect was reversed only in those treated with melatonin. We conclude that melatonin may act on the ovarian response reverting chronic anovulation induced by pinealectomy or continuous light.
    Brazilian Journal of Medical and Biological Research 08/2004; 37(7):987-95. DOI:10.1590/S0100-879X2004000700007 · 1.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In all vertebrates, melatonin is rhythmically synthesized in the pineal gland and functions as a hormonal message, encoding for the duration of night. In rodents, the nocturnal rise and fall of the arylalkylamine N-ace-tyltransferase (AA-NAT) activity controls the rhythmic synthesis of melatonin. This rhythm is centered around the transcriptional regulation of the AA-NAT by two norepinephrine-inducible transcription factors, the activator CREB (Ca2+/cAMP-response element binding protein) and the inhibitor ICER (inducible cAMP early repressor). CREB is activated by phosphorylation, which is one of the fastest responses in pinealocytes upon adrenergic stimulation, occurring within minutes. ICER in turn accumulates only after several hours, a time gap resulting from the required de novo protein synthesis upon adrenergic stimulation. However, these molecular components of neuroendocrine signaling in the rodent pineal gland are supplemented by the impact of a variety of neurotransmitters and neuromodulators, and by translational and post-translational mechanisms. By molecular crosstalk, those different inputs on pinealocytes seem to fine-tune the shape of the melatonin signal, by interacting at various levels with the NE/cAMP/pCREB/ICER pathway. In addition, these alternate signaling routes may be important in acute "emergency" situations. Together, concerted signaling events in the rodent pineal gland help to generate a stable and reliable hormonal message of darkness for the body, that, however, can be altered rapidly upon sudden and unexpected "error" signals.
    Endocrine 08/2005; 27(2):89-100. DOI:10.1385/ENDO:27:2:089 · 3.53 Impact Factor