Pineal melatonin synthesis and release are not altered throughout the estrous cycle in female rats

University of Strasbourg, Strasburg, Alsace, France
Journal of Pineal Research (Impact Factor: 9.6). 02/2003; 34(1):53-9. DOI: 10.1034/j.1600-079X.2003.02952.x
Source: PubMed

ABSTRACT Melatonin times reproduction with seasons in many photoperiodic mammalian species. Whether sexual hormones reflect on melatonin synthesis is still debated. The aim of this work was to study, using a large panel of technical approaches, whether the daily profile of pineal melatonin synthesis and release varies with the estrous cycle in the female rat. The mRNA levels and enzyme activities of the melatonin synthesizing enzymes, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase were similar at the four stages of the rat estrous cycle. The endogenous release of melatonin, followed by transpineal microdialysis during six consecutive days in cycling female rats, displayed no significant variation during this interval. Taken together, the present results demonstrate that there is no regular fluctuation in the pineal metabolism leading to melatonin synthesis and release throughout the estrous cycle in female rats.

Download full-text


Available from: Jose Cipolla-Neto, Sep 27, 2015
20 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A single intragastric administration of 7,12-dimethylbenz(a)anthracene (DMBA) has been shown to induce mammary tumors in young cycling female Sprague-Dawley rats. The appearance of the tumors is preceded, during the la-tency phase, by a series of neuroendocrine disturbances, including attenuation of the preovulatory Luteinizing Hormone surge and Gonadotropin-Releasing Hormone release and amplification of the preovulatory 17 -Estradiol (E2) surge. Also, E2 treatment leads to a complete blunting of the Isoproterenol-induced stimulation of Melatonin secretion.In this study, we examined the hypothesis that Tamoxifen, an antagonist of E2, would stimulate the Isoproterenol-induced Mela-tonin (MT) secretion from the pineal gland, during the latency phase. Sprague-Dawley rats, 55-60 days of age, received, on the Estrous day of the Estrous cycle, a single dose of 15 mg DMBA delivered by intragastric intubation. In order to avoid possible interactions with endogenous steroids or mammary tumor-derived compounds, they were ovariectomized 5 days later and, one month later, sacrificed by decapitation at 10 a.m. Then, pineal glands were removed and placed in perifusion chambers containing Hanks 199 medium. The medium was satured with O 2 /CO 2 (95 %/5 %) and its pH was 7.4. Ten independent chambers were immersed in a water bath at 37°C. Each pineal gland received medium (flow rate : 0.16 ml/min) through a system of input lines. The fractions were collected every 10 min, and immediately frozen at –20°C until Melatonin RIA. Experiments were repeated to obtain up to five ex-perimental points for each treatment. Tamoxifen (10 -9 to 10 -7 M) was applied during the entire perifusion period (7 hours). Isoproterenol (10 -6 M) was applied for 20 min after 3 hours in perifusion. Melatonin concentrations and Areas Under the Curves were compared using two-factor ANOVA as well as parametric or nonparametric two-sample methods after test-ing sample normality. In vehicle treated rats, Tamoxifen treatment, at the concentration of 10 -9 M, leads to a non significant amplification of the Isoproterenol-induced stimulation of Melatonin secretion. In DMBA-treated rats, Tamoxifen treatment leads,starting from 10 -9 M to a dose-dependent increase (up to 400% in-crease) of the Isoproterenol-induced stimulation of Melatonin . The results suggest that in addition to the well documented beneficial effects of Tamoxifen at the mammary gland level, this E2 antagonist may also have, after DMBA treatment, an additional beneficial effect at the pineal gland level through-out the stimulation of Melatonin, which exerts an inhibitory action on the induction and on the growth of breast cancers.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
    Pharmacological Reviews 07/2003; 55(2):325-95. DOI:10.1124/pr.55.2.2 · 17.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current study was conducted to investigate the relationship between melatonin and chronic anovulation. Adult (3-4 months old) female Wistar rats were submitted to pinealectomy: group I: pinealectomized ovariectomized melatonin-treated (N = 10); group II: pinealectomized ovariectomized placebo-treated (N = 12); group III: pinealectomized light-treated placebo-treated (N = 10) or maintained under continuous light; group IV: maintained under continuous light, ovariectomized melatonin-treated (N = 22); group V: maintained under continuous light, ovariectomized placebo-treated (N = 10); group VI: maintained under continuous light placebo-treated (N = 10). In order to assess ovarian modifications, unilateral ovariectomy was performed during the fourth month in groups I, II, IV, V and the other ovary was removed after 8 months. Ovariectomy was performed in groups III and VI only after eight months. Melatonin (200 micro g/100 g body weight) dissolved in 0.02 ml absolute ethanol was injected intramuscularly daily during the last 4 months into groups I and IV. The other groups were treated with placebo (NaCl). The ovarian cysts were analyzed and their area, perimeter and maximum diameter, as well as the thickness of the ovarian capsule were measured. Daily colpocytological smears were performed throughout the study. Persistent estrous condition and ovarian cysts were observed in all groups. In pinealectomized rats the ovarian and vaginal alterations disappeared at the end of the study and in rats maintained under continuous light the vaginal and ovarian polycystic aspect was reversed only in those treated with melatonin. We conclude that melatonin may act on the ovarian response reverting chronic anovulation induced by pinealectomy or continuous light.
    Brazilian Journal of Medical and Biological Research 08/2004; 37(7):987-95. DOI:10.1590/S0100-879X2004000700007 · 1.01 Impact Factor
Show more