Article

Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats

Center for Oral Biology and Eastman Department of Dentistry, University of Rochester Medical Center, NY 14642, USA.
Oral Microbiology and Immunology (Impact Factor: 2.81). 12/2002; 17(6):337-43. DOI: 10.1034/j.1399-302X.2002.170602.x
Source: PubMed

ABSTRACT Propolis, a resinous hive product secreted by Apis mellifera bees, has been shown to reduce the incidence of dental caries in rats. Several compounds, mainly polyphenolics, have been identified in propolis. Apigenin and tt-farnesol demonstrated biological activity against mutans streptococci. We determined here their effects, alone or in combination, on glucosyltransferase activity, biofilm viability, and development of caries in rats. Sprague-Dawley rats were infected with Streptococcus sobrinus 6715 and treated topically twice daily as follows: (1) tt-farnesol, (2) apigenin, (3) vehicle control, (4) fluoride, (5) apigenin +tt-farnesol, and (6) chlorhexidine. Apigenin (1.33 mM) inhibited the activity of glucosyltransferases in solution (90-95%) and on the surface of saliva-coated hydroxyapatite beads (35-58%); it was devoid of antibacterial activity. tt-Farnesol (1.33 mM) showed modest antibacterial activity against biofilms and its effects on glucosyltransferases were minimal. The incidence of smooth-surface caries was significantly reduced by apigenin +tt-farnesol (60%), fluoride (70%), and chlorhexidine (72%) treatments compared to control (P < 0.05).

0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Baccharis dracunculifolia DC (Asteraceae), popularly known as "alecrim-do-campo, " is largely distributed in South America, is shown to exhibit protective actions against gastric ulcers, has anti-inflammatory properties, and is hepatoprotective. Several essential oils obtained from Baccharis species possess biological activities, such as antimicrobial and antivirus activities. This randomized controlled trial evaluated the efficacy of B. dracunculifolia in the reduction of dental biofilm, comparing this natural product with other mouthwashes already known in the dental market. In measuring the time after use of mouthwash (= 1), there was no difference between products (= 0.602); that is, subjects in the study had a similar PI after the first use. After one week (= 2), there was no difference between the four products evaluated (= 0.674), so, all research individuals completed the study with a similar reduction in dental biofilm between themselves but it was different from initial state (Friedman test). It is possible to conclude that B. dracunculifolia had the same efficiency of the materials used to oral hygiene in reduction of dental plaque and, consequently, prevention of dental caries. Thus, we can consider B. dracunculifolia as a good candidate for new material to be implemented in dental care.
    The Scientific World Journal 11/2014; DOI:10.1155/2015/712683 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μ g/mL and 400 μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.
    Evidence-based Complementary and Alternative Medicine 06/2013; 2013:256287. DOI:10.1155/2013/256287 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nidus Vespae (honeycomb) is a kind of traditional Chinese medicine that has been demonstrated to inhibit the growth and acid-production of oral cariogenic bacteria. Subsequent studies showed that the chloroform/methanol (Chl/MeOH) chemical extraction of Nidus Vespae was the most effective inhibitor of growth and acidogenicity of Streptococcus mutans. In this study, we isolated the chemical compounds of the Nidus Vespae Chl/MeOH extraction, tested their antimicrobial activity against six cariogenic bacteria and further evaluated the acid inhibition properties, anti-F-ATPase activity and anti-LDH activity against S. mutans. The isolated flavonoids, quercetin and kaempferol, inhibited the growth of bacteria (S. mutans, Streptococcus sobrinus, Streptococcus sanguis, Actinomyces viscosus, Actinomyces naeslundii and Lactobacillus rhamnosus) with minimum inhibitory concentrations (MICs) ranging from 1 to 4 mg/ml and minimum bactericidal concentrations (MBCs) from 4 to 16 mg/ml. In addition, quercetin and kaempferol at sub-MIC levels significantly inhibited acidogenicity and acidurity of S. mutans cells. Treated with the test agents, the F-ATPase activity was reduced by 47.37% with 1mg/ml quercetin and by 49.66% with 0.5mg/ml kaempferol. The results showed that quercetin and kaempferol contained in Chl/MeOH extraction presented remarkably biological activity, suggesting that Nidus Vespae might be useful as a potential preventive and therapeutic agent in dental caries.
    Microbiological Research 04/2011; 167(2):61-8. DOI:10.1016/j.micres.2011.03.002 · 1.94 Impact Factor