fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease.

Memory Disorders Unit, Department of Neurology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.
Journal of Neurology Neurosurgery & Psychiatry (Impact Factor: 5.58). 02/2003; 74(1):44-50.
Source: PubMed

ABSTRACT To examine alterations in patterns of brain activation seen in normal aging and in mild Alzheimer's disease by functional magnetic resonance imaging (fMRI) during an associative encoding task.
10 young controls, 10 elderly controls, and seven patients with mild Alzheimer's disease were studied using fMRI during a face-name association encoding task. The fMRI paradigm used a block design with three conditions: novel face-name pairs, repeated face-name pairs, and visual fixation.
The young and elderly controls differed primarily in the pattern of activation seen in prefrontal and parietal cortices: elderly controls showed significantly less activation in both superior and inferior prefrontal cortices but greater activation in parietal regions than younger controls during the encoding of novel face-name pairs. Compared with elderly controls, the Alzheimer patients showed significantly less activation in the hippocampal formation but greater activation in the medial parietal and posterior cingulate regions.
The pattern of fMRI activation during the encoding of novel associations is differentially altered in the early stages of Alzheimer's disease compared with normal aging.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) survivors typically exhibit significant learning and memory deficits and also frequently demonstrate hyperactivation during functional magnetic resonance imaging (fMRI) tasks involving working memory encoding and maintenance. However, it remains unclear whether the hyperactivation observed during such working memory tasks is also present during long-term memory encoding. The preliminary experiments presented here were designed to examine this question. In Experiment 1, 7 healthy controls (HC) and 7 patients with moderate to severe TBI encoded ecologically relevant object location associations (OLA) while undergoing fMRI and then completed a memory test outside of the fMRI environment. fMRI data analysis included only the correctly encoded trials and revealed hyperactivation in the TBI relative to HC group in regions critical for OLA encoding, including bilateral dorsal and ventral visual processing areas, bilateral frontoparietal working memory network regions, and the left medial temporal lobe. There was also an incidental finding that this hyperactivation persisted after multiple exposures to the same stimulus, which may indicate an attenuated repetition suppression effect that could ultimately contribute to cognitive fatigue and inefficient memory encoding after TBI. Experiment 2 directly assessed repetition suppression in some of the same HC and TBI participants. During early encoding trials, the TBI group showed large areas of hyperactivation in the right prefrontal cortex and bilateral posterior parietal cortices relative to the HC. Following additional exposure to these stimuli, the TBI group showed repetition suppression in visual and spatial processing regions, but continued to show hyperactivation in the right dorsolateral prefrontal cortex. Findings from these preliminary studies may reflect that increased reliance on cognitive control mechanisms following TBI extends to memory encoding.
    Brain Imaging and Behavior 12/2014; DOI:10.1007/s11682-014-9337-5 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variation is associated with differences in the function of the brain as well as its susceptibility to disease. The common H1 haplotypic variant of the microtubule-associated protein tau gene (MAPT) has been related to an increased risk for Parkinson's disease (PD). Furthermore, among PD patients, H1 homozygotes have an accelerated progression to dementia. We investigated the neurocognitive correlates of MAPT haplotypes using functional magnetic resonance imaging. Thirty-seven nondemented patients with PD (19 H1/H1, 18 H2 carriers) and 40 age-matched controls (21 H1/H1, 19 H2 carriers) were scanned during performance of a picture memory encoding task. Behaviorally, H1 homozygosity was associated with impaired picture recognition memory in PD patients and control subjects. These impairments in the H1 homozygotes were accompanied by an altered blood-oxygen level-dependent response in the medial temporal lobe during successful memory encoding. Additional age-related differences in blood-oxygen level-dependent response were observed in the medial temporal lobes of H1 homozygotes with PD. These results suggest that common variation in MAPT is not only associated with the dementia of PD but also differences in the neural circuitry underlying aspects of cognition in normal aging. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neurobiology of Aging 12/2014; DOI:10.1016/j.neurobiolaging.2014.12.006 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of human brain mapping depended on much diverse expertise from physics and biology through mathematics and statistics, to neurology, neuropsychiatry, and neuropsychology. The realization of this dependence on the expertise of many individuals from many disciplines represents the basis of an enterprise focussed on the understanding the functional (and structural) architecture of the human brain and the methodological developments that have supported their achievement. Structural MRI provides an in-depth evaluation of the central nervous system anatomy. The enhanced anatomical detail allowed by recent MRI scanners has outlined patterns relatively specific of different neurological diseases. A number of tools of varying technological complexity have been developed to rate the structural changes taking place in the brains of patients with cognitive impairment, ranging from simple subjective rating scales to sophisticated computerized algorithms. On the other hand, functional magnetic resonance (fMRI) is a tool that by exploiting the principles of traditional MRI, allows mapping and studying the function of brain, i.e. "looking at the brain while it works". It is a non-invasive technique, based on the measurement of MRI signal changes associated with alterations in local blood oxygenation levels (for a critical discussion, see Logothetis and Pfeuffer, 2004). The functional imaging methods of positron emission tomography (PET), single photon emission tomography (SPECT) allow the in vivo measurement of several parameters of brain function. These include oxygenation levels, perfusion, metabolism, and also neurotransmission. Noteworthy, radiolabelled tracers for receptor occupancy or enzymatic activities represent a unique tool for the in vivo measurement of specific neurotransmission systems. Direct measures of therapeutic targets by PET may provide unique information on drug action in vivo, allowing studies of the effects in selected patient populations (Halldin et al., 2001). The instrumentations and reconstruction algorithms are different for PET and SPECT because of the properties of positron and gamma emissions. The availability of positron emitting radioisotopes, such as carbon, oxygen and fluorine, which can fit into biological relevant molecules without altering their biological properties, gives PET substantial advantages. Such tracers or radiopharmaceuticals closely share the properties of normally occurring brain substances. On the other hand SPECT, with gamma emitting elements like iodine or technetium, is more widely available. These methods are sensitive to modifications taking place at the cellular level, which are not necessarily reflected in morphological abnormalities. They are thus providing a different type of information, in comparison with structural imaging such as MRI.

Full-text (2 Sources)

Available from
Jun 1, 2014