Article

The effect of Gu-Sui-Bu (Drynaria fortunei J. Sm) immobilized modified calcium hydrogenphosphate on bone cell activities.

Department of Orthopedic Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan, ROC.
Biomaterials (Impact Factor: 8.31). 03/2003; 24(5):873-82. DOI: 10.1016/S0142-9612(02)00372-1
Source: PubMed

ABSTRACT In our previous study, we have validated the efficacy and the safety of Gu-Sui-Bu [Drynaria fortunei (Kunze) J. Sm.] by the bone cells culture. However, a satisfactory delivery system for Gu-Sui-Bu must be developed before it can be used in clinical medicine. In this study, we try to use modified calcium hydrogenphosphate (MCHP) bioceramic as a carrier to transport Gu-Sui-Bu into the bone cell culture system. Toward this goal, we evaluated the effect of a Gu-Sui-Bu-immobilized modified calcium hydrogenphosphate (GI-MCHP) on the bone cells activities. THE CHINESE MEDICINE: Gu-Sui-Bu [Drynaria fortunei (kunze) J. Sm] was extracted and then immobilized on the surface of MCHP. The rat osteoblasts-osteoclasts co-culture system was used as the experimental model. After the cells grew to 80% confluence, different sizes of GI-MCHP particles were tested. The mitochondria activity of the bone cells after exposure was determined by colorimetric assay. Biochemical markers such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP), acid phosphatase (ACP) and prostaglandin E(2) titer were analyzed to evaluate the bone cells activities. Histomorphometric study of osteoclasts activities and the phenotype expression of osteoblasts were also evaluated. There is no detectable titer of LDH secretion into the medium and no significant change in the intracellular ALP content. The ALP titer in the culture medium did increase significantly at 3 days' culture, while there is a significant decrease in the intracellular ACP content and significant increase in the ACP titer in the medium. The concentrations of PGE(2) in tested medium are always significantly higher than that of control medium during the 7 days' culture. At the end of 7 days' culture, the PGE(2) concentrations in the tested medium were still 4.74 times that of the control medium. After GI-MCHP treatment on bone cells, the size of the osteoclasts seems decreased and their cell integrity seems lost, while the osteoblasts phenotype expression was relatively preserved. From this study, we demonstrated that Gu-Sui-Bu [Drynaria fortunei (Kunze) J. Sm.] immobilized MCHP has well preserved the potential beneficial effects of Gu-Sui-Bu on the bone cells culture.

0 Bookmarks
 · 
213 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chinese herbal medicine (CHM) has been commonly used for treating osteoarthritis in Asia for centuries. This study aimed to conduct a large-scale pharmaco-epidemiologic study and evaluate the frequency and patterns of CHM used in treating osteoarthritis in Taiwan. A complete database (total 22,520,776 beneficiaries) of traditional Chinese medicine (TCM) outpatient claims offered by the National Health Insurance program in Taiwan for the year 2002 was employed for this research. Patients with osteoarthritis were identified according to the diagnostic code of the International Classification of Disease among claimed visiting files. Corresponding prescription files were analyzed, and an association rule was applied to evaluate the co-prescription of CHM for treating osteoarthritis. There were 20,059 subjects who visited TCM clinics for osteoarthritis and received a total of 32,050 CHM prescriptions. Subjects between 40 and 49 years of age comprised the largest number of those treated (19.2%), followed by 50-59 years (18.8%) and 60-69 years group (18.2%). In addition, female subjects used CHMs for osteoarthritis more frequently than male subjects (female: male = 1.89: l). There was an average of 5.2 items prescribed in the form of either an individual Chinese herb or formula in a single CHM prescription for osteoarthritis. Du-zhong (Eucommia bark) was the most commonly prescribed Chinese single herb, while Du-huo-ji-sheng-tang was the most commonly prescribed Chinese herbal formula for osteoarthritis. According to the association rule, the most commonly prescribed formula was Du-huo-ji-sheng-tang plus Shen-tong-zhu-yu-tang, and the most commonly prescribed triple-drug combination was Du-huo-ji-sheng-tang, Gu-sui-pu (Drynaria fortune (Kunze) J. Sm.), and Xu-Duan (Himalaya teasel). Nevertheless, further clinical trials are needed to evaluate the efficacy and safety of these CHMs for treating osteoarthritis. This study conducted a large scale pharmaco-epidemiology survey of Chinese herbal medicine use in OA patients by analyzing the NHIRD in Taiwan in year 2002.
    BMC Complementary and Alternative Medicine 03/2014; 14(1):91. DOI:10.1186/1472-6882-14-91 · 1.88 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present work shows drug-carrier interactions, release behaviors and cell responses of hydroxyapatite (HA) containing salvianolic acid B (Sal B), astragalus polysaccharide (APS), and naringin. X-ray diffraction (XRD) showed that the crystallinity and crystal size of HA decreased significantly when Sal B was added (p<0.05). Transmission electron microscope (TEM) confirmed that the nano-acicular crystals of HA containing Sal B were the most fine among all specimens. It was conjectured that Sal B preferentially adsorbed on the positively charged surface of HA crystals to inhibit their growth. In vitro release of HA containing Chinese medicines followed the first-order equation. The drug-carrier affinity between HA and Sal B might have prolonged the release of Sal B. The proliferation and differentiation of osteoblasts were promoted by Chinese medicines containing HA in the time and dosage dependent manner. The osteoblasts displayed a polygonal morphology with cell-cell junctions in all cases. It is suggested that the contained Chinese medicines would promote the activities of the osteoblasts.
    Journal of Wuhan University of Technology-Mater Sci Ed 02/2013; 28(1). DOI:10.1007/s11595-013-0659-8 · 0.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent's within medical implant devices.
    09/2012; 3(4):706-725. DOI:10.3390/jfb3040706
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Download
98 Downloads
Available from
Jun 4, 2014