Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii.

School of Microbiology and Immunology, University of New South Wales, Sydney, New South Wales 2051, Australia.
Molecular Ecology (Impact Factor: 6.28). 02/2003; 12(1):133-40. DOI: 10.1046/j.1365-294X.2003.01709.x
Source: PubMed

ABSTRACT Cylindrospermopsis raciborskii is a planktonic freshwater cyanobacterium that has become increasingly prevalent in tropical and temperate water bodies world-wide. This species is of concern from a water-quality perspective because of its known ability to produce toxins that can affect the health of humans and other animals. This study investigates genetic variation between strains of C. raciborskii isolated from freshwater rivers and reservoirs in Australia, Brazil, Germany, Hungary, Portugal and the USA. Strains were first characterized by analysis of their 16S rRNA gene nucleotide sequences and were found to have a sequence divergence of 99.1%. A phylogenetic tree, constructed using the 16S rRNA gene sequences showed that strains grouped into Australian, European and North/South American phylotypes. To investigate further the observed separation of strains into geographically distinct groups, we applied a cyanobacterium-specific short tandem repeat sequence technique, HIP1. An electrophoretic comparison of the HIP1 polymerase chain reaction products showed clear distinctions between the C. raciborskii strains. A phylogenetic tree, based on the repeat element banding patterns, also revealed three distinct groups of C. raciborskii strains. The first group consisted of strains from the USA and Brazil; the second comprised European strains from Germany, Hungary and Portugal; and the third were strains from Australia. In general, between-country variation was greater than within-country variation, indicating that this fingerprinting technique can successfully distinguish C. raciborskii strains taken from different global locations. The relationship between toxicity and the observed HIP1 polymerase chain reaction fingerprint profiles was less clear, although it is interesting to note that of the strains analysed in this study, only Australian strains are known to produce cylindrospermopsin and only Brazilian strains have been reported to produce paralytic shellfish poisoning toxins.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological invasions often cause major perturbations in the environment and are well studied among macroorganisms. Less is known about invasion by free-living microbes. Gonyostomum semen (Raphidophyceae) is a freshwater phytoplankton species that has increased in abundance in Northern Europe since the 1980's and has expanded its habitat range. In this study, we aimed to determine the genetic population structure of G. semen in Northern Europe and to what extent it reflects the species' recent expansion. We sampled lakes from 12 locations (11 lakes) in Norway, Sweden and Finland. Multiple strains from each location were genotyped using Amplified Fragment Length Polymorphism (AFLP). We found low differentiation between locations, and low gene diversity within each location. Moreover, there was an absence of genetic isolation with distance (Mantel test, p = 0.50). According to a Bayesian clustering method all the isolates belonged to the same genetic population. Together our data suggest the presence of one metapopulation and an overall low diversity, which is coherent with a recent expansion of G. semen.
    PLoS ONE 12/2013; 8(12):e82510. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and non-toxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore changes in strain dominance is the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions.This article is protected by copyright. All rights reserved.
    FEMS Microbiology Ecology 04/2014; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins.
    Marine Drugs 01/2013; 11(11):4350-69. · 3.98 Impact Factor

Full-text (2 Sources)

Available from
Jun 9, 2014