Article

Role of stroma in carcinogenesis of the prostate

Departments of Anatomy and Urology, University of California, San Francisco, CA 94143-0452, USA.
Differentiation (Impact Factor: 2.84). 01/2003; 70(9-10):473-85. DOI: 10.1046/j.1432-0436.2002.700902.x
Source: PubMed

ABSTRACT Prostatic development is induced by androgens acting via mesenchymal-epithelial interactions. Androgens elicit their morphogenetic effects by acting through androgen receptors (ARs) in urogenital sinus mesenchyme (UGM), which induces prostatic epithelial development. In adulthood reciprocal homeostatic stromal-epithelial interactions maintain functional differentiation and growth-quiescence. Testosterone plus estradiol (T+E2) have been shown to induce prostatic carcinogenesis in animal models. Thus, tissue recombinant studies were undertaken to explore the mechanisms of prostatic carcinogenesis in BPH-1 cells in which ARs and estrogen receptors (ERs) are undetectable. For this purpose, BPH-1 cells were combined with UGM, and the UGM+BPH-1 recombinants were grafted to adult male hosts. Solid branched epithelial cords and ductal structures formed in untreated UGM+BPH-1 recombinants. Growth was modest, and tumors did not develop. UGM+BPH-1 recombinants treated with T+E2 formed invasive carcinomas. BPH-1 cells lack ARs and ERs, whereas rat UGM expresses both of these receptors. These data show that immortalized nontumorigenic human prostatic epithelial cells can undergo hormonal carcinogenesis in response to T+E2 stimulation via paracrine mechanisms and demonstrate that the stromal environment plays an important role in mediating hormonal carcinogenesis. During prostatic carcinogenesis the stroma undergoes progressive loss of smooth muscle with the appearance of carcinoma-associated fibroblasts (CAF). This altered stroma was tested for its ability to promote carcinogenesis of nontumorigenic but immortalized human prostatic epithelial cells (BPH-1). CAF+BPH-1 tissue recombinants formed large carcinomas. In contrast, recombinants composed of normal prostatic stroma+BPH-1 cells exhibited minimal growth. This stroma-induced malignant transformation was associated with additional genetic alterations and changes in gene expression. Thus, alteration in the stromal microenvironment was sufficient to promote malignant transformation of human prostatic epithelial cells.

0 Followers
 · 
144 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-β) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-β in vivo does not fully inhibit tumor growth in bone or tumor-induced bone destruction, suggesting other pathways are involved. While Wnt signaling regulates Gli2 in development, the role of Wnt signaling in bone metastasis is unknown. Therefore, we investigated whether Wnt signaling regulates Gli2 expression in tumor cells that induce bone destruction. We report here that Wnt activation by β-catenin/T cell factor 4 (TCF4) over-expression or lithium chloride (LiCl) treatment increased Gli2 and PTHrP expression in osteolytic cancer cells. This was mediated through the TCF and Smad binding sites within the Gli2 promoter as determined by promoter mutation studies, suggesting cross-talk between TGF-β and Wnt signaling. Culture of tumor cells on substrates with bone-like rigidity increased Gli2 and PTHrP production, enhanced autocrine Wnt activity and led to an increase in the TCF/Wnt signaling reporter (TOPFlash), enriched β-catenin nuclear accumulation, and elevated Wnt-related genes by PCR-array. Stromal cells serve as an additional paracrine source of Wnt ligands and enhanced Gli2 and PTHrP mRNA levels in MDA-MB-231 and RWGT2 cells in vitro and promoted tumor-induced bone destruction in vivo in a β-catenin/Wnt3a-dependent mechanism. These data indicate that a combination of matrix rigidity and stromal-secreted factors stimulate Gli2 and PTHrP through Wnt signaling in osteolytic breast cancer cells, and there is significant cross-talk between the Wnt and TGF-β signaling pathways. This suggests that the Wnt signaling pathway may be a potential therapeutic target for inhibiting tumor cell response to the bone microenvironment and at the very least should be considered in clinical regimens targeting TGF-β signaling.
    Clinical and Experimental Metastasis 10/2014; 31(8). DOI:10.1007/s10585-014-9682-1 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we tested the hypothesis that SNPs associated with prostate cancer risk, might differentially affect RNA expression in prostate cancer stroma. The most significant 35 SNP loci were selected from Genome Wide Association (GWA) studies of ~40,000 patients. We also selected 4030 transcripts previously associated with prostate cancer diagnosis and prognosis. eQTL analysis was carried out by a modified BAYES method to analyze the associations between the risk variants and expressed transcripts jointly in a single model. We observed 47 significant associations between eight risk variants and the expression patterns of 46 genes. This is the first study to identify associations between multiple SNPs and multiple in trans gene expression differences in cancer stroma. Potentially, a combination of SNPs and associated expression differences in prostate stroma may increase the power of risk assessment for individuals, and for cancer progression.
    Oncotarget 01/2015; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
    American Journal Of Pathology 11/2014; 185(2). DOI:10.1016/j.ajpath.2014.10.012 · 4.60 Impact Factor

Full-text (2 Sources)

Download
60 Downloads
Available from
Jun 2, 2014