Article

Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons.

Neurogenetics Laboratory, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA.
Neuron (Impact Factor: 15.98). 01/2003; 36(6):1007-19. DOI: 10.1016/S0896-6273(02)01125-X
Source: PubMed

ABSTRACT One hypothesis for the etiology of Parkinson's disease (PD) is that subsets of neurons are vulnerable to a failure in proteasome-mediated protein turnover. Here we show that overexpression of mutant alpha-synuclein increases sensitivity to proteasome inhibitors by decreasing proteasome function. Overexpression of parkin decreases sensitivity to proteasome inhibitors in a manner dependent on parkin's ubiquitin-protein E3 ligase activity, and antisense knockdown of parkin increases sensitivity to proteasome inhibitors. Mutant alpha-synuclein also causes selective toxicity to catecholaminergic neurons in primary midbrain cultures, an effect that can be mimicked by the application of proteasome inhibitors. Parkin is capable of rescuing the toxic effects of mutant alpha-synuclein or proteasome inhibition in these cells. Therefore, parkin and alpha-synuclein are linked by common effects on a pathway associated with selective cell death in catecholaminergic neurons.

0 Followers
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. Copyright © 2015. Published by Elsevier Inc.
    Molecular and Cellular Neuroscience 02/2015; DOI:10.1016/j.mcn.2015.02.008 · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malformed α-Synuclein (α-syn) aggregates in neurons are released into the extracellular space, activating microglia to induce chronic neuroinflammation that further enhances neuronal damage in α-synucleinopathies, such as Parkinson's disease. The mechanisms by which α-syn aggregates activate and recruit microglia remain unclear, however. Here we show that α-syn aggregates act as chemoattractants to direct microglia toward damaged neurons. In addition, we describe a mechanism underlying this directional migration of microglia. Specifically, chemotaxis occurs when α-syn binds to integrin CD11b, leading to H2O2 production by NADPH oxidase. H2O2 directly attracts microglia via a process in which extracellularly generated H2O2 diffuses into the cytoplasm and tyrosine protein kinase Lyn, phosphorylates the F-actin-associated protein cortactin after sensing changes in the microglial intracellular concentration of H2O2. Finally, phosphorylated cortactin mediates actin cytoskeleton rearrangement and facilitates directional cell migration. These findings have significant implications, given that α-syn-mediated microglial migration reaches beyond Parkinson's disease.
    Proceedings of the National Academy of Sciences 03/2015; 112(15). DOI:10.1073/pnas.1417883112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson's disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson's disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson's disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson's disease in pre-clinical research and validation of therapeutic targets.
    Frontiers in Behavioral Neuroscience 03/2015; 9. DOI:10.3389/fnbeh.2015.00068 · 4.16 Impact Factor