De Vries, I. J. et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 63, 12-17

Department of Tumor Immunology, University Medical Center Nijmegen, 6500 HB Nijmegen, The Netherlands.
Cancer Research (Impact Factor: 9.28). 02/2003; 63(1):12-7.
Source: PubMed

ABSTRACT Dendritic cells are the professional antigen-presenting cells of the immune system. To induce an effective immune response, these cells should not only express high levels of MHC and costimulatory molecules but also migrate into the lymph nodes to interact with naïve T cells. Here, we demonstrate that in vitro-generated mature, but not immature dendritic cells, efficiently migrate into the T-cell areas of lymph nodes of melanoma patients. This difference is confirmed by in vitro studies, in which immature dendritic cells are strongly adherent, whereas mature dendritic cells remain highly motile. Our present findings demonstrate that the ability of dendritic cells to mount a proper immune response correlates with their ability to migrate both in vitro and in vivo.

Download full-text


Available from: Gosse J Adema, Aug 23, 2015
  • Source
    • "DCs are already activated and therefore they are able to migrate to the secondary lymph nodes wherein they will trigger T cells. However, the relative short half-life of TAA-MHC complexes on DC membrane surface, and the low percentage (3–5%) of DCs that can migrate to the lymph nodes and contact with T cells can contribute to the low rate of success of these vaccines (De Vries et al., 2003; Hamdy et al., 2011). Also, being produced specifically for a particular patient, ex vivo DC-based vaccines are a highly complex, laborious, time-consuming and expensive approach. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.
    Frontiers in Chemistry 11/2014; 2(105):1. DOI:10.3389/fchem.2014.00105
  • Source
    • "Whilst the ability of Ag-loaded DC to raise measurable anti-tumor responses has been demonstrated, the question of whether optimal priming has been achieved remains unanswered. Certainly the observation that only a small proportion of the injected Ag-loaded DC ever reach the lymph node (Morse et al., 1999; De Vries et al., 2003) where naïve T cells require priming, suggests that only sub-optimal immune activation is ever achieved (Lesterhuis et al., 2008). From an immunological perspective, it is not clear if the ex vivo Agloaded DC directly prime immunity or whether they simply shuttle their Ag to the draining lymph node where it is acquired by resident Abbreviations: Ag, antigen; APC, antigen presenting cells; cDC, conventional DC; DC, dendritic cells; mAb, monoclonal antibody; OVA, ovalbumin; pDC, plasmacytoid DC; TLR, toll-like receptor; Treg, T regulatory cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo.
    Frontiers in Immunology 02/2012; 3:13. DOI:10.3389/fimmu.2012.00013
  • Source
    • "First, DCs are a terminally differentiated cell type that cannot be expanded ex vivo, resulting in limited numbers of cells with which to vaccinate patients. Furthermore, upon administration of DCs to patients, the vast majority of cells are sequestered at the injection site and fail to migrate to draining lymph nodes [8] [9]. DC viability as well as peptide- MHC complex integrity is lost after 24–48 hours [10], and sequestration allows ample time for DC dedifferentiation, which may result in immune tolerance rather than activation [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The success of cancer vaccines is dependent on the delivery of tumor-associated antigens (TAAs) within lymphoid tissue in the context of costimulatory molecules and immune stimulatory cytokines. Dendritic cells (DCs) are commonly utilized to elicit antitumor immune responses due to their attractive costimulatory molecule and cytokine expression profile. However, the efficacy of DC-based vaccines is limited by the poor viability and lymph-node migration of exogenously generated DCs in vivo. Alternatively, adoptively transferred T cells persist for long periods of time in vivo and readily migrate between the lymphoid and vascular compartments. In addition, T cells may be genetically modified to express both TAA and DC-activating molecules, suggesting that T cells may be ideal candidates to serve as cellular vehicles for antigen delivery to lymph node-resident DCs in vivo. This paper discusses the concept of using T cells to induce tumor-specific immunity for vaccination against cancer.
    BioMed Research International 10/2011; 2011:417403. DOI:10.1155/2011/417403 · 2.71 Impact Factor
Show more