Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype

University of Rome Tor Vergata, Roma, Latium, Italy
Human Genetics (Impact Factor: 4.52). 03/2003; 112(2):135-42. DOI: 10.1007/s00439-002-0869-1
Source: PubMed

ABSTRACT X-linked myotubular myopathy is characterised by neonatal hypotonia, muscle weakness and respiratory distress in affected males, leading often to early death, although prolonged survival is observed in milder forms, or as a result of prolongation of ventilation support. It is caused by mutations in the MTM1 gene, which encodes a phosphatase called myotubularin, which has been highly conserved during evolution, down to yeasts ( S. cerevisiae and S. pombe). To date, 251 mutations have been identified in unrelated families, corresponding to 158 different disease-associated mutations, which are widespread throughout the gene. We have found additional mutations in 77 patients, including 35 novel ones. We identified a missense mutation N180K in a 67-year-old grandfather (the oldest known patient with an MTM1 mutation), previously suspected to have autosomal centronuclear myopathy, and in his two grandsons also mildly affected. Mild and moderate phenotypes associated with novel missense mutations and with a translation initiation defect mutation are discussed, as well as severe phenotypes associated with particular novel mutations. With the present report, 192 different mutations in the MTM1 gene have been described in 328 families. The spectrum of mutations is now enlarged from the very severe classic neonatal phenotype to very mild phenotype allowing survival to the age of 67 years.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.
    EMBO Molecular Medicine 09/2014; DOI:10.15252/emmm.201404436 · 8.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The X-linked myotubular myopathy (XLMTM) also called X-linked centronuclear myopathy is a rare congenital myopathy due to mutations in the MTM 1 gene encoding myotubularin. The disease gives rise to a severe muscle weakness in males at birth. The main muscle morphological characteristics (significant number of small muscle fibers with centralized nuclei and type 1 fiber predominance) are usually documented, but the sequence of formation and maintenance of this particular morphological pattern has not been extensively characterized in humans. In this study, we perform a reevaluation of morphological changes in skeletal muscle biopsies in severe XLMTM. We correlate the pathologic features observed in the muscle biopsies of 15 newborns with MTM 1-mutations according to the "adjusted-age" at the time of muscle biopsy, focusing on sequential analysis in the early period of the life (from 34 weeks of gestation to 3 months of age). We found a similar morphological pattern throughout the period analyzed; the proportion of myofibers with central nuclei was high in all muscle biopsies, independently of the muscle type, the age of the newborns at time of biopsy and the specific MTM 1 mutation. We did not observe a period free of morphological abnormalities in human skeletal muscle as observed in myotubularin-deficient mouse models. In addition, this study demonstrated some features of delayed maturation of the muscle fibers without any increase in the number of satellite cells, associated with a marked disorganization of the muscle T-tubules and cytoskeletal network in the skeletal muscle fibers.
    07/2013; 3(4):476-86. DOI:10.1002/brb3.147
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centronuclear myopathies (CNMs) are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin ("X-linked myotubular myopathy"), autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9), and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse, and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly, and disturbance of the excitation-contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features. The following review will provide an overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions, and indicate promising future lines of enquiry.
    Frontiers in Aging Neuroscience 12/2014; 6:339. DOI:10.3389/fnagi.2014.00339 · 2.84 Impact Factor