Saccharomyces cerevisiae contains a Type II phosphoinositide 4-kinase.

Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9041, USA.
Biochemical Journal (Impact Factor: 4.78). 05/2003; 371(Pt 2):533-40. DOI: 10.1042/BJ20021407
Source: PubMed

ABSTRACT The yeast Saccharomyces cerevisiae contains two known phosphoinositide 4-kinases (PI 4-kinases), which are encoded by PIK1 and STT4; both are essential. Pik1p is important for exocytic transport from the Golgi, whereas Stt4p plays a role in cell-wall integrity and cytoskeletal rearrangements. In the present study, we report that cells have a third PI 4-kinase activity encoded by LSB6, a protein identified previously in a two-hybrid screen as interacting with LAS17p. Although Pik1p and Stt4p are closely related members of the Type III class of PI 4-kinases, Lsb6p belongs to the distinct Type II class, based on its amino acid sequence, its sensitivity to inhibition by adenosine and its insensitivity to wortmannin. Lsb6p is the first fungal Type II enzyme cloned. The protein was expressed and purified from Sf9 cells and used to define kinetic parameters. As commonly observed for surface-active enzymes, activities varied both with substrate concentration and lipid/detergent molar ratios. Maximal activities of approx. 100 min(-1) were obtained at the PI/Triton X-100 ratio of 1:5. The K (m) value for ATP was 266 microM, intermediate between the values reported for mammalian Type II and III kinases. Epitope-tagged protein, expressed in yeast, was entirely particulate, and about half of it could be extracted with non-ionic detergent. Lsb6p-green fluorescent protein was found both on vacuolar membranes and on the plasma membrane, suggesting a role in endocytic or exocytic pathways.


Available from: Joel M Goodman, Feb 24, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type II phosphatidylinositol 4-kinase (PI4KII) produces the lipid phosphatidylinositol 4-phosphate (PI4P), a key regulator of membrane trafficking. Here, we generated genetic models of the sole Drosophila melanogaster PI4KII gene. A specific requirement for PI4KII emerged in larval salivary glands. In PI4KII mutants, mucin-containing glue granules failed to reach normal size, with glue protein aberrantly accumulating in enlarged Rab7-positive late endosomes. Presence of PI4KII at the Golgi and on dynamic tubular endosomes indicated two distinct foci for its function. First, consistent with the established role of PI4P in the Golgi, PI4KII is required for sorting of glue granule cargo and the granule-associated SNARE Snap24. Second, PI4KII also has an unforeseen function in late endosomes, where it is required for normal retromer dynamics and for formation of tubular endosomes that are likely to be involved in retrieving Snap24 and Lysosomal enzyme receptor protein (Lerp) from late endosomes to the trans-Golgi network. Our genetic analysis of PI4KII in flies thus reveals a novel role for PI4KII in regulating the fidelity of granule protein trafficking in secretory tissues.
    Development 07/2012; 139(16):3040-50. DOI:10.1242/dev.077644 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are six major species of phospholipids in eukaryotes, each of which play unique structural and functional roles. One species, phosphatidylinositol (PI) only contributes about 2-10% of the total phospholipid pool. However, they are critical factors in the regulation of several fundamental processes such as in membrane dynamics and signal transduction pathways. Although numerous acyl species exist, PI species are enriched with one specific acyl chain composition at both the sn-1 and sn-2 positions. Recent work has identified several enzymes that act on lipids to lead to the formation or interconversion of PI species that exhibit acyl chain specificity. These enzymes contribute to this lipid's enrichment with specific acyl chains. The nature of the acyl chains on signaling lipids have been shown to contribute to their specificity. Here we review some of the critical functions of PI and the multiple pathways in which PI can be produced and metabolized. We also discuss a common motif that may confer arachidonoyl specificity to several of the enzymes involved.This article is part of a Special Issue entitled: Membrane structure and function: Relevance in the cell's physiology, pathology and therapy. This article is part of a Special Issue entitled: Membrane structure and function: Relevance in the cell's physiology, pathology and therapy.
    Biochimica et Biophysica Acta 10/2013; 1838(6). DOI:10.1016/j.bbamem.2013.10.003 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
    Physiological Reviews 07/2013; 93(3):1019-137. DOI:10.1152/physrev.00028.2012 · 29.04 Impact Factor