Article

Lack of self-administration and behavioural sensitisation to morphine, but not cocaine, in mice lacking NK1 receptors.

Laboratory of Experimental Psychology, University of Sussex, Falmer, BN1 9QG, Brighton, UK.
Neuropharmacology (Impact Factor: 4.11). 01/2003; 43(8):1258-68. DOI: 10.1016/S0028-3908(02)00295-2
Source: PubMed

ABSTRACT Mice lacking the NK1 receptor, the preferred receptor for substance P, demonstrate normal analgesic responses to morphine on the hot plate assay, but have been predicted, on the basis of conditioned place preference studies, to be insensitive to the rewarding properties of opiates. In this study, self-administration and the development and maintenance of locomotor sensitisation of both morphine and cocaine were investigated in mice that lacked the NK1 gene (NK1 knockout mice, NK1(-/-)). Both wildtype and NK1(-/-) mice learned an operant lever-press response to obtain food. When intravenous infusions of morphine (0.2 mg/kg/infusion) were substituted for the food reward, the wildtype mice initially reduced rates of lever pressing, but then increased them on the rewarded lever to obtain approx. 10 infusions per 90 min session; in contrast, NK1(-/-) mice continued to operate both the rewarded, and non-rewarded levers at low rates. Additionally, NK1(-/-) mice failed, following repeated administration, to sensitise to the locomotor stimulant effects of morphine (15 mg/kg, i.p.). These deficits were specific to opiates, since NK1(-/-) mice responding for food or cocaine self-administration (0.65 mg/kg/infusion) did not differ from wildtypes, and they showed normal behavioural sensitisation to repeated cocaine administration (10 mg/kg, i.p.). These results demonstrate that NK1 receptors are critical for the reinforcing properties of morphine, and for adaptive responses elicited by repeated opiate administration. It is postulated that substance P and the NK1 receptor may be necessary for the development of opiate, but not cocaine addiction.

0 Bookmarks
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Opioids are widely prescribed pain relievers with multiple side effects and potential complications. They produce analgesia via G-protein-protein coupled receptors: μ-, δ-, κ-opioid and opioid receptor-like 1 receptors. Bivalent ligands targeted to the oligomerized opioid receptors might be the key to developing analgesics without undesired side effects and obtaining effective treatment for opioid addicts. In this review we will update the biological effects of μ-opioids on homo- or hetero-oligomerized μ-opioid receptor and discuss potential mechanisms through which bivalent ligands exert beneficial effects, including adenylate cyclase regulation and receptor-mediated signaling pathways.
    Cells. 01/2013; 2(4):689-714.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The medial habenula (MHb) densely expresses nicotinic acetylcholine receptors (nAChRs) and participates in nicotine-related behaviors such as nicotine withdrawal and regulating nicotine intake. Although specific nAChR subunits are identified as being involved in withdrawal behavior, the cellular mechanisms through which nicotine acts to cause this aversive experience is unclear. Here, we demonstrate an interaction between the nicotinic and neurokinin signaling systems that may form the basis for some symptoms experienced during nicotine withdrawal. Using patch-clamp electrophysiology in mouse brain slices, we show that nicotine (1 μm) increases intrinsic excitability in MHb neurons. This nicotine-induced phenomenon requires α5-containing nAChRs and depends on intact neurokinin signaling. The effect is blocked by preincubation with neurokinin 1 (NK1; L-732138, 10 μm) and NK3 (SB222200, 2 μm) antagonists and mimicked by NK1 (substance P, 100 nm) and NK3 (neurokinin B [NKB], 100 nm) agonists. Microinjections (1 μl) of L-732138 (50 nm) and SB222200 (100 nm) into the MHb induces withdrawal behavior in chronic nicotine-treated (8.4 mg/kg/d, 2 weeks) mice. Conversely, withdrawal behavior is absent with analogous microinjections into the lateral habenula of nicotine-treated mice or in mice chronically treated with a vehicle solution. Further, chronic nicotine reduces nicotine's acute modulation of intrinsic excitability while sparing modulation by NKB. Our work elucidates the interplay between two neuromodulatory signaling systems in the brain through which nicotine acts to influence intrinsic excitability. More importantly, we document a neuroadaptation of this mechanism to chronic nicotine exposure and implicate these mechanisms collectively in the emergence of nicotine withdrawal behavior.
    Journal of Neuroscience 03/2014; 34(12):4273-84. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
    Frontiers in neuroscience. 01/2014; 8:288.

Full-text (2 Sources)

Download
13 Downloads
Available from
May 21, 2014