Exercise and sleep.

Department of Psychiatry, University of Toronto, University Health Network, Toronto Western Hospital Applied and Interventional Research Division, Canada
Sleep Medicine Reviews (Impact Factor: 9.14). 09/2000; 4(4):387-402. DOI: 10.1053/smrv.2000.0110
Source: PubMed

ABSTRACT This paper reviews the literature on the association between exercise and sleep. The epidemiological and experimental evidence for whether or not acute and chronic exercise promote sleep is discussed, as well as moderating factors and agendas for future directions of study. The expectation that exercise will benefit sleep can partly be attributed to traditional hypotheses that sleep serves energy conservation, body restoration or thermoregulatory functions, all of which have guided much of the research in this field. Exercise is a complex activity that can be beneficial to general well-being but may also stress the body. Differences in the exercise protocols studied (e.g. aerobic or anaerobic, intensity, duration) and interactions between individual characteristics (e.g. fitness, age and gender) cloud the current experimental evidence supporting a sleep-enhancing effect of exercise. In addition, the tendency to study changes in small groups of good sleepers may also underestimate the efficacy of exercise for promoting sleep. Athough only moderate effect sizes have been noted, meta-analytical techniques have shown that exercise increased total sleep time and delayed REM sleep onset (10 min), increased slow-wave sleep (SWS) and reduced REM sleep (2-5 min). The sleep-promoting efficacy of exercise in normal and clinical populations has yet to be established empirically.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objectives of the present study were to determine the effect of sun exposure and aerobic exercise on quality of sleep and investigate sleep-related hormonal responses in college-aged males. In this study, the cross-over design was utilized. The subjects (N = 10) without any physical problems or sleep disorders participated in the experimental performed 4 protocols in only sun exposure (for 30 minutes, EG1) protocol, only aerobic exercise (walking and jogging for 30 minutes, EG2) protocol, aerobic exercise with sun exposure (EG3) protocol, and control (no exercise and no sun exposure, EG4) protocol. Each protocol was 5 times per week with one-week break (wash-out period) between protocols to prevent the effects of the previous protocol. Total test period was should be 7 weeks (one week of protocol and one week of break). Before and after each aerobic exercise session, the subjects completed stretching to warm up for 5 to 10 minutes. Surveys consisting of (bedtime, wake-up time, sleep onset latency, and (Pittsburgh Sleep Quality Index (PSQI) were obtained before the test and after each protocol. After each protocol, the following sleep-related hormonal responses were measured: blood concentrations of melatonin, cortisol, epinephrine, and norepinephrine. One-way ANOVA was used to determine differences between protocols. Statistical significance was set at p < 0.05. Bedtime of EG4 was significantly later than that of the EG1 or EG3. Wake-up time in the EG4 was significantly later than that of the EG1 or the EG3. Sleep onset latency in the EG4 was longer than that of the EG3. The quality of sleep in the EG4 was lower than that of the EG3. Sleep cycle in the EG4 was significantly shorter than that of the EG1. Blood melatonin concentrations of the EG3 was significantly higher than that of the EG4. There were no significant differences in blood concentrations of cortisol, epinephrine, or norepinephrine among protocols, with the order from the lowest to the highest values of EG1 < EG2 < EG3 < EG4. The present data found that EG1 and EG3 showed positive sleep-related hormonal responses, sleep habits, and quality of sleep, indicating that sun exposure or exercise with sun exposure may improve the physical status and quality of life.
    09/2014; 18(3):293-9. DOI:10.5717/jenb.2014.18.3.293
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Thorough information about the relationship between physical activity (PA) and life satisfaction is still lacking. Therefore, this study examined the cross-sectional relationships between life satisfaction and meeting the World Health Organization (WHO) moderate to vigorous-intensity PA recommendations, total volume and duration of PA, intensity-specific PA (walking, moderate- and vigorous-intensity), domain-specific PA (work, transport-related, domestic, and leisure-time), and 11 domain and intensity-specific PA types among university students. Additionally, we examined the associations between life satisfaction and gender, age, disposable income, community size, smoking, alcohol intake, body mass index (BMI), and self-rated health. Methods The study included a random sample of 1750 university students in Zagreb, Croatia (response rate = 71.7%; 62.4% females; mean age 21.5 ± 1.8 years), using the International Physical Activity Questionnaire – long form and the Satisfaction with Life Scale. Results Higher life satisfaction was associated with female gender (β = 0.13; p = <0.001), younger age (β = -0.07; p = 0.024), higher disposable income (β = 0.10; p = 0.001), and better self-rated health (β = 0.30; p = <0.001). No significant association was found between life satisfaction and size of community (p = 0.567), smoking status (p = 0.056), alcohol consumption (p = 0.058), or BMI (p = 0.508). Among all PA variables, only leisure-time vigorous-intensity PA was significantly associated with life satisfaction after adjustments for socio-demographic characteristics, lifestyle and self-rated general health (β = 0.06; p = 0.045). Conclusions This study indicated a weak positive relationship between leisure-time vigorous-intensity PA and life satisfaction, whilst no such association was found for other PA variables. These findings underscore the importance of analyzing domain and intensity-specific PA levels in future studies among university students, as drawing conclusions about the relationship between PA and life satisfaction based on total PA levels only may be misleading.
    PLoS ONE 02/2015; 10(2):e0118137. DOI:10.1371/journal.pone.0118137 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During nocturnal sleep, blood pressure (BP) "dips" compared to diurnal BP, reducing stress on the cardiovascular system. Both the hypotensive response elicited by acute aerobic exercise and sleep quality can impact this dipping response. The purpose of this study was to investigate the effects of aerobic exercise timing on circadian BP changes and sleep architecture. Twenty prehypertensive subjects completed the study. During four test sessions, participants first completed a graded exercise test to exhaustion and then performed 30 minutes of treadmill exercise at 7 am (7A), 1 pm (1P), and 7 pm (7P) in a random, counterbalanced order at 65% of the heart rate obtained at peak oxygen uptake. An ambulatory cuff was used to monitor BP responses during 24 hours following exercise, and an ambulatory sleep-monitoring headband was worn during sleep following each session. Aerobic exercise at 7A invoked a greater dip in nocturnal systolic BP than exercise at 1P or 7P, although the greatest dip in nocturnal diastolic BP occurred following 7P. Compared to 1P, 7A also invoked greater time spent in deep sleep. These data indicate that early morning may be the most beneficial time to engage in aerobic exercise to enhance nocturnal BP changes and quality of sleep.
    Vascular Health and Risk Management 01/2014; 10:691-698. DOI:10.2147/VHRM.S73688