Insulin can block apoptosis by decreasing oxidative stress via phosphatidylinositol 3-kinase- and extracellular signal-regulated protein kinase-dependent signaling pathways in HepG2 cells.

Department of Medicine, College of Medicine, Institute of Basic Science and Department of Biology, College of Natural Science, Cheju National University, Ara-1, Cheju, 690-756, South Korea.
European Journal of Endocrinology (Impact Factor: 3.14). 02/2003; 148(1):147-55. DOI: 10.1530/eje.0.1480147
Source: PubMed

ABSTRACT Insulin has well-known activities in controlling energy metabolism, cellular proliferation and biosynthesis of functional molecules to maintain a biological homeostasis. Recently, several studies have suggested that insulin may protect cells from apoptosis in different cell lines; however, little is known about the nature of its anti-apoptotic activity. In many clinical disorders, including type 2 diabetes mellitus, oxidative stress and the production of reactive oxygen species (ROS) is increased. With these facts as a background, we examined here whether insulin protects HepG2 cells from apoptosis by decreasing oxidative stress and, if so, which signaling steps are involved in this process.
Intracellular DNA content, the degree of nuclear condensation or poly(ADP-ribose) polymerase hydrolysis was measured to verify the occurrence of apoptotic events. Caspase-3 activity and ROS accumulation within cells were also measured. Western blot analysis was performed to identify signaling molecules activated in response to insulin.
Serum starvation resulted in a marked accumulation of ROS, activation of caspase-3, and subsequent apoptotic cell death which were, in turn, markedly blocked by the addition of insulin. The anti-apoptotic activity of insulin was sensitive to blockade of two different signaling steps, activations of phosphatidylinositol 3-kinase (PI3 kinase) and extracellular signal-regulated protein kinase (ERK).
Insulin exerts an anti-apoptotic activity by suppressing the excessive accumulation of ROS within cells through signaling pathways including stimulation of PI3 kinase and ERK in HepG2 cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Effects of Citrus sunki peel and its fermented product extracts on physiological and functional activities of cellular systems were investigated. Ethanol extract of Citrus sunki peel showed potent ROS-scavenging activity using 2',7'-Dichlorofluorescin diacetate as a fluorescent ROS probe in HepG2 cells. Fermented product of C. sunki peel extract markedly suppressed nitric oxide production in lipopolysaccharide (LPS)-activated RAW264.7 murine macrophage cells. Treatment with fermented product of C. sunki peel extract decreased intracellular protein levels of inducible nitric oxide synthase and cyclooxygenase II stimulated by LPS. High doses of fermented product lend to apoptotic cell death in CHO-IR cells.
    Korean Journal of Food Science and Technology. 01/2005; 37(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whether responses of cells to extracellular environments affect the induction of apoptotic cell death is poorly understood. The current study aimed to unravel the different effects of culture media employed in vitro as extracellular environments on the susceptibility of cells to apoptosis. We found that apoptosis is stimulated to the higher levels by culturing human HeLa cells in Opti-MEM with unknown components, a medium that is specifically used for transfections, than by culturing cells in Dulbecco's modified Eagle's medium, a medium that is generally used for maintenance of cells. We showed that apoptosis is suppressed partially by culturing cells in heat-treated Opti-MEM, implicating a heat-sensitive component(s) in stimulating the apoptotic response of cells. Thus, different extracellular environments may contribute to different responses of cells to apoptosis, and this should be considered to evaluate the incidences of apoptotic cell death and could be applied to develop an efficient treatment for curing diseases such as cancer.
    In Vitro Cellular & Developmental Biology - Animal 05/2014; · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin is a cytokine which promotes cell growth. Recently, a few published reports on insulin in different cell lines support the antiapoptotic effect of insulin. But the reports fail to explain the role of insulin in modulating glutamate-mediated neuronal cell death through excitotoxicity. Thus, we examined the neuroprotective effect of insulin on glutamate-induced toxicity on differentiated SH-SY5Y neuronal cells. Changes in cell viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) based assay, while apoptotic damage was detected by acridine orange/ethidium bromide and Hoechst staining. Intracellular reactive oxygen species (ROS) accumulation and morphological alterations were also measured. Treatment with glutamate induced apoptosis, elevated ROS levels and caused damage to neurons. Insulin was able to attenuate the glutamate-induced excitotoxic damage to neuronal cells.
    Behavioural neurology 06/2014; 2014. · 1.25 Impact Factor


1 Download
Available from