A novel DNA polymerase inhibitor and a potent apoptosis inducer: 2-mono-O-acyl-3-O-(alpha-D-sulfoquinovosyl)-glyceride with stearic acid.

Department of Nutritional Science, Laboratory of Food & Nutritional Sciences, Kobe-Gakuin University, Nishi-ku, Hyogo 651-2180, Kobe, Japan.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 02/2003; 1645(1):72-80. DOI: 10.1016/S1570-9639(02)00521-6
Source: PubMed

ABSTRACT Sulfo-glycolipids in the class of sulfoquinovosyl diacylglycerol (SQDG) including the stereoisomers are potent inhibitors of DNA polymerase alpha and beta. However, since the alpha-configuration of SQDG with two stearic acids (alpha-SQDG-C(18)) can hardly penetrate cells, it has no cytotoxic effect. We tried and succeeded in making a permeable form, sulfoquinovosyl monoacylglycerol with a stearic acid (alpha-SQMG-C(18)) from alpha-SQDG-C(18) by hydrolysis with a pancreatic lipase. alpha-SQMG-C(18) inhibited DNA polymerase activity and was found to be a potent inhibitor of the growth of NUGC-3 cancer cells. alpha-SQMG-C(18) arrested the cell cycle at the G1 phase, and subsequently induced severe apoptosis. The arrest was correlated with an increased expression of p53 and cyclin E, indicating that alpha-SQMG-C(18) induced cell death through a p53-dependent apoptotic pathway.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In screening of selective inhibitors of eukaryotic DNA polymerases (pols) for 15 years, more than 100 inhibitors have been discovered from natural and chemical sources. Some compounds selectively inhibit the activities of mammalian pols, and in particular, dehydroaltenusin and curcumin derivatives, such as monoacetyl-curcumin, were found to be specific inhibitors of pol alpha and pol lambda, respectively. Dehydroaltenusin was isolated from a fungus (Alternaria tennuis), and this compound inhibited cell proliferation of human cancer cell lines by arresting the cells at the S-phase, and was effective in suppressing the growth on nude mice of solid tumors of human cervical cancer cell line HeLa. Curcumin derivatives had anti-12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory activity with the same tendency as pol lambda inhibitory activity. These compounds might be useful not only as "molecular probes" for pol research, but also as biomedical and chemotherapeutic drugs for anti-cancer or anti-inflammation.
    Bioscience Biotechnology and Biochemistry 07/2009; 73(6):1239-51. · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lobophora variegata, a brown alga collected from the coast of the Yucatan peninsula, Mexico, was studied for antiprotozoal activity against Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The whole extract showed the highest activity against T. vaginalis, with an IC(50) value of 3.2 microg/mL. For the fractions, the best antiprotozoal activity was found in non-polar fractions. The chloroform fraction of the extract contained a major sulfoquinovosyldiacylglycerol (SQDG), identified as 1-O-palmitoyl-2-O-myristoyl-3-O-(6'''-sulfo-alpha-D-quinovopyranosyl)-glycerol (1), together with small amounts of 1,2-di-O-palmitoyl-3-O-(6'''-sulfo-alpha-D-quinovopyranosyl)-glycerol (2) and a new compound identified as 1-O-palmitoyl-2-O-oleoyl-3-O-(6'''-sulfo-alpha-D-quinovopyranosyl)-glycerol (3). Their structures were elucidated on the basis of chemical and enzymatic hydrolysis and careful analysis of FAB-MS and NMR spectroscopic data. This is the first report on the isolation of SQDGs from L. variegata. The mixture of 1-3 showed good activity against E. histolytica and moderate activity against T. vaginalis with IC(50s) of 3.9 and 8.0 microg/mL, respectively, however, the activity of 1-3 is not as effective as metronidazole. These results afford ground information for the potential use of the whole extract and fractions of this species in protozoal infections.
    Marine Drugs 01/2010; 8(4):1292-304. · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in the area of glycobiology have been paralleled by progress in our understanding of the physical properties of glycoglycerolipids (GGLs). These advances have been accelerated by interest in the new found roles of these simple glycolipids in nature, by advances in synthetic procedures, and by an interest in the technological application of a group of amphiphiles with unique physical and chemical properties. Here, we consider the phase properties of some GGL/water systems containing either a single hexopyranoside or pentopyranoside headgroup. Recent calorimetric and X-ray diffraction measurements of some GGL diastereomers suggest that both headgroup and interfacial hydration play a major role in determining both lyotropism and mesomorphic phase properties as the chemical structure of the lipid headgroup, interface and hydrocarbon chains are systematically altered. For GGLs of a given chain length, interactions between the headgroup/interface and water determine whether or not a highly ordered, lamellar crystalline phase is formed, the number of such phases and their rate of formation and, in some cases, the nature of the molecular packing of those phases. In the liquid crystalline phases, the hydrocarbon chains determine the area per molecule in the lamellar liquid crystalline phase, but it is the cross-sectional area of the hydrated headgroup and the penetration of water into the interface which determines the nature of the non-lamellar phases, probably through small changes in interfacial geometry as the lateral stresses in the headgroup region increase.
    Current Opinion in Colloid & Interface Science 04/2004; · 6.63 Impact Factor