Bre1, an E3 Ubiquitin Ligase Required for Recruitment and Substrate Selection of Rad6 at a Promoter

Department of Biochemistry, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
Molecular Cell (Impact Factor: 14.46). 02/2003; 11(1):267-74. DOI: 10.1016/S1097-2765(02)00802-X
Source: PubMed

ABSTRACT Ubiquitination of histone H2B catalyzed by Rad6 is required for methylation of histone H3 by COMPASS. We identified Bre1 as the probable E3 for Rad6's role in transcription. Bre1 contains a C3HC4 (RING) finger and is present with Rad6 in a complex. The RING finger of Bre1 is required for ubiquitination of histone H2B, methylation of lysine 4 and 79 of H3 and for telomeric silencing. Chromatin immunoprecipitation experiments indicated that both Rad6 and Bre1 are recruited to a promoter. Bre1 is essential for this recruitment of Rad6 and is dedicated to the transcriptional pathway of Rad6. These results suggest that Bre1 is the likely E3 enzyme that directs Rad6 to modify chromatin and ultimately to affect gene expression.

Download full-text


Available from: Jim Dover, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we show that the Ino80 chromatin remodeling complex (Ino80C) directly prevents euchromatin from invading transcriptionally silent chromatin within intergenic regions and at the border of euchromatin and heterochromatin. Deletion of Ino80C subunits leads to increased H3K79 methylation and noncoding RNA polymerase II (Pol II) transcription centered at the Ino80C-binding sites. The effect of Ino80C is direct, as it blocks H3K79 methylation by Dot1 in vitro. Heterochromatin stimulates the binding of Ino80C in vitro and in vivo. Our data reveal that Ino80C serves as a general silencing complex that restricts transcription to gene units in euchromatin. © 2015 Xue et al.; Published by Cold Spring Harbor Laboratory Press.
    Genes & Development 02/2015; 29(4):350-5. DOI:10.1101/gad.256255.114
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoubiquitination of histone H2B on Lys 123 (H2BK123ub) is a transient histone modification considered to be essential for establishing H3K4 and H3K79 trimethylation by Set1/COMPASS and Dot1, respectively. Here, we identified Chd1 as a factor that is required for the maintenance of high levels of H2B monoubiquitination, but not for H3K4 and H3K79 trimethylation. Loss of Chd1 results in a substantial loss of H2BK123ub levels with little to no effect on the genome-wide pattern of H3K4 and H3K79 trimethylation. Our data show that nucleosomal occupancy is reduced in gene bodies in both chd1Δ and, as has been shown, K123A mutant backgrounds. We also demonstrated that Chd1's function in maintaining H2BK123ub levels is conserved from yeast to humans. Our study provides evidence that only small levels of H2BK123ub are necessary for full levels of H3K4 and H3K79 trimethylation in vivo and points to a possible role for Chd1 in positively regulating gene expression through promoting nucleosome reassembly coupled with H2B monoubiquitination.
    Genes & development 05/2012; 26(9):914-9. DOI:10.1101/gad.186841.112
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone post-transcriptional modifications play essential roles in regulation of all DNA related processes. Among them, histone ubiquitination has been discovered for more than three decades. However, its functions are still less well understood than other histone modifications such as methylation and acetylation. In this review, we will summarize our current understanding of histone ubiquitination and deubiquitination. In particular, we will focus on how they are regulated by histone ubiquitin ligases and deubiquitinating enzymes. We will then discuss the roles of histone ubiquitination in transcription and DNA damage response and the crosstalk between histone ubiquitination and other histone modifications. Finally, we will review the important roles of histone ubiquitination in stem cell biology and cancer.
    Frontiers in Oncology 03/2012; 2:26. DOI:10.3389/fonc.2012.00026