Article

Genetic Determinants of Coxsackievirus B3 Pathogenesis

UBC McDonald Research Laboratories/The iCAPTUR E Center, Department of Pathology and Laboratory Medicine, St. Paul's Hospital/Providence Health Care-University of British Columbia, Canada.
Annals of the New York Academy of Sciences (Impact Factor: 4.31). 01/2003; 975(1):169-79. DOI: 10.1111/j.1749-6632.2002.tb05950.x
Source: PubMed

ABSTRACT The development of high throughput genomic and bioinformatic analysis tools, coupled with established molecular techniques, has allowed new insights into the pathogenesis of infectious diseases. In humans, coxasackievirus B3 (CVB3) is the primary etiological agent of viral myocarditis, an inflammatory disease process involving the heart muscle. Early host cellular survival and apoptotic mechanisms during viral infections, as well as immune events, affect myocarditis progression and outcome. Therefore, our laboratory has been keenly interested in infectomics, defined here as the transcriptional events of both virus and host. We first elucidated up- or downregulated transcriptional activities in CVB3-infected hearts by mRNA differential display. Further characterization of these regulated genes including Nip21, IP10, and IGTPase, and study of their role in CVB3-infection are underway. In further dissection of the stages of myocarditis-peak viremia, inflammatory infiltration and tissue repair-we used cDNA microarrays to probe differential gene expression in the myocardium following virus infection. Following virus infection, there are global decreases in metabolic and mitochondrial genes, increases in signaling genes and distinctive patterns in other functional groups. To establish early gene expression profiles in infected cells by themselves, we also used oligonucleotide arrays in an in vitro model of CVB3 infection. Notably, we have found increased expression of transcription factors c-fos and c-jun down-stream of extracellular signal-related kinase, a pathway which is crucial for virus replication and pathogenesis. Our investigations based on gene profiling following CVB3 infection have thus far been fruitful in providing new experimental leads. High throughput genetic analysis has allowed us to simultaneously try on greater than 12,000 potential genetic "glass slippers." Our in vitro experimental plan has enabled us to chart prominent patterns of gene expression, analyzed by novel bioinformatic approaches, and to separate varied and potentially significant gene expression events.

0 Followers
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coxsackievirus (CV)B3 is the primary cause of viral myocarditis. We previously observed CXC chemokine ligand 10 (CXCL10) upregulation in the myocardium early in infection. However, the impact of CXCL10 in CVB3-induced myocarditis is unknown. Using isolated primary mouse cardiomyocytes we demonstrated for the first time that cardiomyocytes can express CXCL10 on interferon-gamma stimulation. To explore the role of CXCL10 in CVB3-induced myocarditis, both CXCL10 transgenic and knockout mice were used. Following CVB3 challenges, the viral titer in the hearts inversely correlated with the levels of CXCL10 at early phase of infection before visible immune infiltration. Furthermore, as compared with the control mice, the decreased virus titers in the CXCL10 transgenic mouse hearts led to less cardiac damage and better cardiac function and vice verse in the knockout mice. This antiviral ability of CXCL10 might be through recruitment of natural killer (NK) cells to the heart and increased interferon-gamma expression early in infection. At day 7 postinfection, with massive influx of mononuclear cells the expression of CXCL10 enhanced the infiltration of CXCR3(+) cells, CD4(+), and CD8(+) T cells, as well as the expression of associated inflammatory cytokines. However, the augmented accumulation of these immune cells and associated cytokines failed to alter the viral clearance and mice survival. These results suggest the protective role of CXCL10 during the early course of CVB3 infection, which is attributed to the recruitment of NK cells. Nonetheless, CXCL10-directed chemoattractant effect is not sufficient for host to clear the virus in the heart.
    Circulation Research 02/2009; 104(5):628-38. DOI:10.1161/CIRCRESAHA.108.192179 · 11.09 Impact Factor
  • Source
  • Source