Article

Homing in pelagic birds: a pilot experiment with white-chinned petrels released in the open sea.

CNRS-CEFE, Behavioural Ecology Group, F-34293 Cedex 5, Montpellier, France
Behavioural processes (Impact Factor: 1.53). 03/2003; 61(1-2):95-100. DOI: 10.1016/S0376-6357(02)00168-7
Source: PubMed

ABSTRACT During the breeding period white-chinned petrels (Procellaria aequinoctialis) repeatedly perform long foraging trips in the open ocean from their breeding island, and are able to home with an astonishing precision. The orientation mechanisms involved are not yet known. By analogy with those used by desert ants moving in a similarly "featureless" environment, one can hypothesise that petrels may home using path-integration. We displaced 11 white-chinned petrels 725-785km from their burrows to the open sea, preventing them from using visual and magnetic route-based information. Three birds carried satellite transmitters. Our results showed that they can home rather efficiently in such conditions.

1 Bookmark
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Procellariiform seabirds wander the world's oceans aided by olfactory abilities rivaling those of any animal on earth. Over the past 15 years, I have been privileged to study the sensory ecology of procellariiforms, focusing on how olfaction contributes to behaviors, ranging from foraging and navigation to individual odor recognition, in a broader sensory context. We have developed a number of field techniques for measuring both olfactory- and visually based behaviors in chicks and adults of various species. Our choice of test odors has been informed by long-term dietary studies and geochemical data on the production and distribution of identifiable, scented compounds found in productive waters. This multidisciplinary approach has shown us that odors provide different information over the ocean depending on the spatial scale. At large spatial scales (thousands of square kilometers), an olfactory landscape superimposed upon the ocean surface reflects oceanographic or bathymetric features where phytoplankton accumulate and an area-restricted search for prey is likely to be successful. At small spatial scales (tens to hundreds of square kilometers), birds use odors and visual cues to pinpoint and capture prey directly. We have further identified species-specific, sensory-based foraging strategies, which we have begun to explore in evolutionary and developmental contexts. With respect to chemical communication among individuals, we have shown that some species can distinguish familiar individuals by scent cues alone. We are now set to explore the mechanistic basis for these discriminatory abilities in the context of kin recognition, and whether or not the major histocompatibility complex is involved.
    Journal of Experimental Biology 07/2008; 211(Pt 11):1706-13. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Petrels, albatrosses and other procellariiform seabirds have an excellent sense of smell, and routinely navigate over the world's oceans by mechanisms that are not well understood. These birds travel thousands of kilometres to forage on ephemeral prey patches at variable locations, yet they can quickly and efficiently find their way back to their nests on remote islands to provision chicks, even with magnetic senses experimentally disrupted. Over the seemingly featureless ocean environment, local emissions of scents released by phytoplankton reflect bathymetric features such as shelf breaks and seamounts. These features suggest an odour landscape that may provide birds with orientation cues. We have previously shown that concentrated experimental deployments of one such compound, dimethyl sulphide (DMS), attracts procellariiforms at sea, suggesting that some species can use it as a foraging cue. Here we present the first physiological demonstration that an Antarctic seabird can detect DMS at biogenic levels. We further show that birds can use DMS as an orientation cue in a non-foraging context within a concentration range that they might naturally encounter over the ocean.
    Biology letters 10/2005; 1(3):303-5. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pelagic birds, which wander in the open sea most of the year and often nest on small remote oceanic islands, are able to pinpoint their breeding colony even within an apparently featureless environment, such as the open ocean. The mechanisms underlying their surprising navigational performance are still unknown. In order to investigate the nature of the cues exploited for oceanic navigation, Cory's shearwaters, Calonectris borealis, nesting in the Azores were displaced and released in open ocean at about 800 km from their colony, after being subjected to sensory manipulation. While magnetically disturbed shearwaters showed unaltered navigational performance and behaved similarly to unmanipulated control birds, the shearwaters deprived of their sense of smell were dramatically impaired in orientation and homing. Our data show that seabirds use olfactory cues not only to find their food but also to navigate over vast distances in the ocean.
    Journal of Experimental Biology 08/2013; 216(Pt 15):2798-2805. · 3.24 Impact Factor

Full-text (2 Sources)

View
98 Downloads
Available from
May 21, 2014