Impact of azaproline on amide cis-trans isomerism: conformational analyses and NMR studies of model peptides including TRH analogues.

Department of Biochemistry, Washington University, St. Louis, Missouri 63110, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 03/2003; 125(5):1221-35. DOI: 10.1021/ja020994o
Source: PubMed

ABSTRACT The beta-turn is a well-studied motif in both proteins and peptides. Four residues, making almost a complete 180 degree-turn in the direction of the peptide chain, define the beta-turn. Several types of the beta-turn are defined according to Phi and Psi torsional angles of the backbone for residues i + 1 and i + 2. One special type of beta-turn, the type VI-turn, usually contains a proline with a cis-amide bond at residue i + 2. In an aza-amino acid, the alpha-carbon of the amino acid is changed to nitrogen. Peptides containing azaproline (azPro) have been shown to prefer the type VI beta-turn both in crystals and in organic solvents by NMR studies. MC/MD simulations using the GB/SA solvation model for water explored the conformational preferences of azPro-containing peptides in aqueous systems. An increase in the conformational preference for the cis-amide conformer of azPro was clearly seen, but the increased stability was relatively minor with respect to the trans-conformer as compared to previous suggestions. To test the validity of the calculations in view of the experimental data from crystal structures and NMR in organic solvents, [azPro(3)]-TRH and [Phe(2), azPro(3)]-TRH were synthesized, and their conformational preferences were determined by NMR in polar solvents as well as the impact of the azPro substitution on their biological activities.



Available from
Feb 10, 2015