Article

Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis.

Institute of Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland.
Eukaryotic Cell (Impact Factor: 3.18). 03/2003; 2(1):170-80. DOI: 10.1128/EC.2.1.170-180.2003
Source: PubMed

ABSTRACT The so far largely uncharacterized central carbon metabolism of the yeast Pichia stipitis was explored in batch and glucose-limited chemostat cultures using metabolic-flux ratio analysis by nuclear magnetic resonance. The concomitantly characterized network of active metabolic pathways was compared to those identified in Saccharomyces cerevisiae, which led to the following conclusions. (i) There is a remarkably low use of the non-oxidative pentose phosphate (PP) pathway for glucose catabolism in S. cerevisiae when compared to P. stipitis batch cultures. (ii) Metabolism of P. stipitis batch cultures is fully respirative, which contrasts with the predominantly respiro-fermentative metabolic state of S. cerevisiae. (iii) Glucose catabolism in chemostat cultures of both yeasts is primarily oxidative. (iv) In both yeasts there is significant in vivo malic enzyme activity during growth on glucose. (v) The amino acid biosynthesis pathways are identical in both yeasts. The present investigation thus demonstrates the power of metabolic-flux ratio analysis for comparative profiling of central carbon metabolism in lower eukaryotes. Although not used for glucose catabolism in batch culture, we demonstrate that the PP pathway in S. cerevisiae has a generally high catabolic capacity by overexpressing the Escherichia coli transhydrogenase UdhA in phosphoglucose isomerase-deficient S. cerevisiae.

Download full-text

Full-text

Available from: Z. Petek Cakar, Jun 17, 2015
0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a simple approach to classify amino acid residue types in NMR spectra of proteins for supporting the backbone resonance assignments. It makes use of the differences in biosynthetic pathways of the 20 amino acids in Escherichia coli. Therefore, it is distinct from the parameters routinely exploited in the backbone resonance assignment such as chemical shifts and spin topology information. The combination of biosynthetically directed fractional 13C-labeling and uniform 15N-labeling enables us to obtain both residue-type specific information and sequential connectivities from a single protein sample. The residue-type classification exploiting biosynthetic pathways can be used for accelerating the conventional backbone assignment procedure.
    Journal of Biomolecular NMR 04/2007; 37(3):187-93. DOI:10.1007/s10858-006-9124-8 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic engineering is a powerful tool for the optimisation and the introduction of new cellular processes. This is mostly done by genetic engineering. Since the introduction of this multidisciplinary approach, the success stories keep accumulating. The primary metabolism of industrial micro-organisms has been studied for long time and most biochemical pathways and reaction networks have been elucidated. This large pool of biochemical information, together with data from proteomics, metabolomics and genomics underpins the strategies for design of experiments and choice of targets for manipulation by metabolic engineers. These targets are often located in the primary metabolic pathways, such as glycolysis, pentose phosphate pathway, the TCA cycle and amino acid biosynthesis and mostly at major branch points within these pathways. This paper describes approaches taken for metabolic engineering of these pathways in bacteria, yeast and filamentous fungi.
    Journal of Biotechnology 04/2007; 129(1):6-29. DOI:10.1016/j.jbiotec.2006.11.021 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.
    FEMS Yeast Research 05/2005; 5(6-7):677-83. DOI:10.1016/j.femsyr.2004.12.003 · 2.44 Impact Factor