Article

Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture.

Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10021, USA.
Journal of Virology (Impact Factor: 4.65). 04/2003; 77(5):3181-90. DOI: 10.1128/JVI.77.5.3181-3190.2003
Source: PubMed

ABSTRACT Hepatitis C virus (HCV) genotype 1 (subtypes 1a and 1b) is responsible for the majority of treatment-resistant liver disease worldwide. Thus far, efficient HCV RNA replication has been observed only for subgenomic and full-length RNAs derived from genotype 1b isolates. Here, we report the establishment of efficient RNA replication systems for genotype 1a strain H77. Replication of subgenomic and full-length H77 1a RNAs required the highly permissive Huh-7.5 hepatoma subline and adaptive amino acid substitutions in both NS3 and NS5A. Replication could be detected by RNA quantification, fluorescence-activated cell sorting, and metabolic labeling of HCV-specific proteins. Replication efficiencies were similar for subgenomic and full-length RNAs and were most efficient for HCV RNAs lacking heterologous RNA elements. Interestingly, both subtype 1a and 1b NS3 adaptive mutations are surface exposed and present on only one face of the NS3 structure. The cell culture-adapted subtype 1a replicons should be useful for basic replication studies and for antiviral development. These results are also encouraging for the development of adapted replicons for the remaining HCV genotypes.

Download full-text

Full-text

Available from: Joseph Marcotrigiano, Jul 04, 2015
0 Followers
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously found that human pegivirus (HPgV; formerly GBV-C) NS3 protease activity inhibits Human Immunodeficiency Virus (HIV) replication in a CD4+ T cell line. Given the protease׳s similarity to the Hepatitis C virus (HCV) NS3 protease, we characterized HPgV protease activity and asked whether it affects the type I interferon response or is inhibited by HCV protease antagonists. We characterized the activity of proteases with mutations in the catalytic triad and demonstrated that the HCV protease inhibitors Telaprevir, Boceprevir, and Danoprevir do not affect HPgV protease activity. HPgV NS3 protease cleaved MAVS but not TRIF, and it inhibited interferon responses sufficiently to enhance growth of an interferon-sensitive virus. Therefore, HPgV׳s inhibition of the interferon response could help promote HPgV persistence, which is associated with clinical benefits in HIV-infected patients. Our results also imply that HCV protease inhibitors should not interfere with the beneficial effects of HPgV in HPgV/HCV/HIV infected patients.
    Virology 05/2014; s 456–457:300–309. DOI:10.1016/j.virol.2014.03.018 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection with genotype 3 hepatitis C virus (HCV) is common throughout the world, however no direct-acting antiviral (DAA) has been approved to treat this genotype. We therefore attempted to develop novel genotype 3 replicons to facilitate the discovery and development of new HCV therapies. A novel Huh-7-derived cell line 1C but not Lunet cells enabled the selection of a few stable colonies of a genotype 3a subgenomic replicon (strain S52). Genotypic analysis revealed a mutation of P89L in the viral NS3 protease domain, which was confirmed to enhance genotype 3a RNA replication and enable the establishment of highly replicating luciferase-encoding replicons. Secondary adaptive mutations that further enhanced RNA replication were identified in the viral NS3 and NS4A proteins. In addition, cell lines that were cured of genotype 3a replicons demonstrated higher permissiveness specifically to genotype 3a HCV replication. These novel replicons and cell lines were then used to study the activity of approved and experimental HCV inhibitors. NS3 protease and non-nucleoside NS5B polymerase inhibitors often demonstrated substantially less antiviral activity against genotype 3a compared to genotype 1b. In contrast, nucleoside analog NS5B inhibitors and host-targeting HCV inhibitors showed comparable antiviral activity between genotypes 3a and 1b. Overall, the establishment of this novel genotype 3a replicon system, in conjunction with those derived from other genotypes, will aid the development of treatment regimens for all genotypes of HCV.
    Antiviral research 09/2013; 100(2). DOI:10.1016/j.antiviral.2013.08.018 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.
    Gene 04/2012; 496(2):79-87. DOI:10.1016/j.gene.2012.01.044 · 2.08 Impact Factor