COMT val(158)met genotype affects mu-opioid neurotransmitter responses to a pain stressor

Department of Psychiatry and Mental Health Research Institute, University of Michigan, Ann Arbor, MI 48109-0720, USA.
Science (Impact Factor: 31.48). 03/2003; 299(5610):1240-3. DOI: 10.1126/science.1078546
Source: PubMed

ABSTRACT Responses to pain and other stressors are regulated by interactions between multiple brain areas and neurochemical systems. We examined the influence of a common functional genetic polymorphism affecting the metabolism of catecholamines on the modulation of responses to sustained pain in humans. Individuals homozygous for the met158 allele of the catechol-O-methyltransferase (COMT) polymorphism (val158met) showed diminished regional mu-opioid system responses to pain compared with heterozygotes. These effects were accompanied by higher sensory and affective ratings of pain and a more negative internal affective state. Opposite effects were observed in val158 homozygotes. The COMT val158met polymorphism thus influences the human experience of pain and may underlie interindividual differences in the adaptation and responses to pain and other stressful stimuli.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review aims at presenting a current view on the physiopathologic mechanisms associated with temporomandibular disorders (TMDs). While joint pain is characterized by a well-defined inflammatory process mediated by tumor necrosis factor-α and interleukin, chronic muscle pain presents with enigmatic physiopathologic mechanisms, being considered a functional pain syndrome similar to fibromyalgia, irritable bowel syndrome, interstitial cystitis and chronic fatigue syndrome. Central sensitization is the common factor unifying these conditions, and may be influenced by the autonomic nervous system and genetic polymorphisms. Thus, TMDs symptoms should be understood as a complex response which might get worse or improve depending on an individual's adaptation.
    01/2015; 20(1):127-33. DOI:10.1590/2176-9451.20.1.127-133.sar
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacological Magnetic Resonance Imaging (phMRI) is a variant of conventional MRI that adds pharmacological manipulations in order to study the effects of drugs, or uses pharmacological probes to investigate basic or applied (e.g. clinical) neuroscience questions. Issues that may confound the interpretation of results from various types of phMRI studies are briefly discussed, and a set of methodological strategies that can mitigate these problems are described. These include strategies that can be employed at every stage of investigation, from study design to interpretation of resulting data, and additional techniques suited for use with clinical populations are also featured. Pharmacological MRI is a challenging area of research that has both significant advantages and formidable difficulties, however with due consideration and use of these strategies many of the key obstacles can be overcome.
    Frontiers in Neuroscience 04/2015; 9(167). DOI:10.3389/fnins.2015.00167
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is suggested that genetic variations explain a significant portion of the variability in pain perception; therefore, increased understanding of pain-related genetic influences may identify new targets for therapies and treatments. The relative contribution of the different genes to the variance in clinical and experimental pain responses remains unknown. It is suggested that the genetic contributions to pain perception vary across pain modalities. For example, it has been suggested that more than 60% of the variance in cold pressor responses can be explained by genetic factors; in comparison, only 26% of the variance in heat pain responses is explained by these variations. Thus, the selection of pain model might markedly influence the magnitude of the association between the pain phenotype and genetic variability. Thermal pain sensation is complex with multiple molecular and cellular mechanisms operating alone and in combination within the peripheral and central nervous system. It is thus highly probable that the thermal pain experience is affected by genetic variants in one or more of the pathways involved in the thermal pain signaling. This review aims to present and discuss some of the genetic variations that have previously been associated with different experimental thermal pain models.
    BioMed Research International 01/2015; 2015:349584. DOI:10.1155/2015/349584 · 2.71 Impact Factor