Article

Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells.

Department of Medical Biochemistry, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
American Journal Of Pathology (Impact Factor: 4.52). 04/2003; 162(3):721-9. DOI:10.1016/S0002-9440(10)63868-0
Source: PubMed

ABSTRACT All blood capillaries consist of endothelial tubes surrounded by mural cells referred to as pericytes. The origin, recruitment, and function of the pericytes is poorly understood, but the importance of these cells is underscored by the severe cardiovascular defects in mice genetically devoid of factors regulating pericyte recruitment to embryonic vessels, and by the association between pericyte loss and microangiopathy in diabetes mellitus. A general problem in the study of pericytes is the shortage of markers for these cells. To identify new markers for pericytes, we have taken advantage of the platelet-derived growth factor (PDGF)-B knockout mouse model, in which developing blood vessels in the central nervous system are almost completely devoid of pericytes. Using cDNA microarrays, we analyzed the gene expression in PDGF-B null embryos in comparison with corresponding wild-type embryos and searched for down-regulated genes. The most down-regulated gene present on our microarray was RGS5, a member of the RGS family of GTPase-activating proteins for G proteins. In situ hybridization identified RGS5 expression in brain pericytes, and in pericytes and vascular smooth muscle cells in certain other, but not all, locations. Absence of RGS5 expression in PDGF-B and PDGFR beta-null embryos correlated with pericyte loss in these mice. Residual RGS5 expression in rare pericytes suggested that RGS5 is a pericyte marker expressed independently of PDGF-B/R beta signaling. With RGS5 as a proof-of-principle, our data demonstrate the usefulness of microarray analysis of mouse models for abnormal pericyte development in the identification of new pericyte-specific markers.

0 0
 · 
0 Bookmarks
 · 
64 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: AIMS: We analyzed the chronic effects of the peroxisome proliferator-activated receptor β/δ (PPAR-β) agonist GW0742 on the renin-independent hypertension induced by deoxycorticosterone acetate (DOCA)-salt. METHODS AND RESULTS: Rats were treated for 5 weeks with: control-vehicle, control-GW0742 (5 or 20 mg kg(-1) day(-1)), DOCA-vehicle, DOCA-GW0742 (5 or 20 mg kg(-1) day(-1)), DOCA-GSK0660 (1 mg kg(-1) day(-1)) and DOCA-GSK0660-GW0742. Rats receiving DOCA-vehicle showed increased systolic blood pressure, left ventricular and kidney weight indices, endothelin-1 (ET-1) and malondialdehyde plasma levels, urinary iso-PGF2α excretion, impaired endothelium-dependent relaxation to acetylcholine and contraction to ET-1 as compared to controls. Aortic reactive oxygen species content, NADPH oxidase activity, and p47(phox), p22(phox), NOX-4, glutathione peroxidase 1, hemeoxygenase-1, and preproET-1 expression were increased whereas catalase and regulators of G protein-coupled signaling proteins (RGS)5 expression were decreased in the DOCA-vehicle group. GW0742 prevented the development of hypertension in a dose-dependent manner but the reduction of renal and cardiac hypertrophy, systemic and vascular oxidative stress markers, and improvement of endothelial dysfunction were only observed after the higher dose. GW0742, at 20 mg kg(-1) day(-1), attenuated ET-1 contraction by increasing RGS5 expression and restored the intracellular redox balance by reducing NADPH-oxidase activity, and by increasing the antioxidant genes expression. The PPAR-β antagonist GSK0660 prevented all vascular changes induced by GW0742 but not its antihypertensive effects. CONCLUSION: Vascular protective effects of GW0742 operate via PPAR-β by interference with the ET-1 signaling as a result of increased expression of RGS5 and up-regulation of antioxidant genes and via PPAR-β independent mechanisms to decrease blood pressure.
    Cardiovascular research 06/2013; · 5.80 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Closure of the ductus arteriosus (DA) is a crucial step in the transition from fetal to postnatal life. Patent DA is one of the most common cardiovascular anomalies in children with significant clinical consequences especially in premature infants. We aimed to identify genes that specify the DA in the fetus and differentiate it from the aorta. Comparative microarray analysis of laser-captured microdissected endothelial (ECs) and vascular smooth muscle cells (SMCs) from the DA and aorta of fetal rats (embryonic day 18 and 21) identified vessel-specific transcriptional profiles. We found a strong age-dependency of gene expression. Among the genes that were upregulated in the DA the regulator of the G-protein coupled receptor 5 (Rgs5) and the transcription factor distal-less homeobox 1 (Dlx1) exhibited the highest and most significant level of differential expression. The aorta showed a significant preferential expression of the Purkinje cell protein 4 (Pcp4) gene. The results of the microarray analysis were validated by real-time quantitative PCR and immunohistochemistry. Our study confirms vessel-specific transcriptional profiles in ECs and SMCs of rat DA and aorta. Rgs5 and Dlx1 represent novel molecular targets for the regulation of DA maturation and closure.
    PLoS ONE 01/2014; 9(1):e86892. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The blood-brain barrier (BBB) is a dynamic structure that maintains the homeostasis of the brain and thus proper neurological functions. BBB compromise has been found in many pathological conditions, including neuroinflammation. Monocyte chemoattractant protein-1 (MCP1), a chemokine that is transiently and significantly up-regulated during inflammation, is able to disrupt the integrity of BBB and modulate the progression of various diseases, including excitotoxic injury and hemorrhage. In this review, we first introduce the biochemistry and biology of MCP1, and then summarize the effects of MCP1 on BBB integrity as well as individual BBB components.
    Cellular and Molecular Life Sciences CMLS 09/2013; · 5.62 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
Aug 29, 2013