Article

Stimulatory effect of progesterone on the expression of steroidogenic acute regulatory protein in MA-10 Leydig cells.

Institute for Hormone and Fertility Research, University of Hamburg, D-22529 Hamburg, Germany.
Biology of Reproduction (Impact Factor: 4.03). 04/2003; 68(3):1054-63.
Source: PubMed

ABSTRACT The steroidogenic acute regulatory protein (StAR), by virtue of its ability to facilitate the intramitochondrial transport of cholesterol, plays an important role in regulating steroid hormone biosynthesis in steroidogenic cells. In agreement with published data, both StAR expression and progesterone production in MA-10 mouse Leydig tumor cells could be stimulated with hCG and 8Br-cAMP. Addition of aminoglutethimide, an inhibitor of cholesterol side chain cleavage (P450(scc)) enzyme, not only resulted in a drastic inhibition of progesterone production but also in an attenuation of StAR expression in response to either hCG or 8-Br-cAMP. Therefore, we addressed the question of whether progesterone, the end product of the steroidogenic cascade in these cells, could be in a position to regulate the StAR gene expression. In MA-10 cells, we report here that progesterone in microgram amounts can induce StAR gene expression in a time- and dose-dependent manner. StAR expression in response to a maximally effective concentration of progesterone of 10 microg/ml was highest at 6 h and started decreasing thereafter. The effect of progesterone on StAR protein and StAR mRNA induction was mimicked by its synthetic analog, progestin R5020, but not by other steroids, including dexamethasone, estradiol, testosterone, and dihydrotestosterone. Dexamethasone, in contrast, was able to inhibit StAR expression in MA-10 cells. Surprisingly, RU486, a potent antagonist of progesterone and glucocorticoid action, had a stimulatory effect on StAR mRNA levels. Reverse transcription-polymerase chain reaction analysis demonstrated the absence of the classical form of progesterone receptor in MA-10 cells. Thus, for the first time, a direct stimulatory effect of a steroid on StAR gene expression has been demonstrated. Furthermore, these results provide a new insight, indicating that progesterone mediates the activation of StAR expression exerted presumably through a novel, nonclassical progesterone receptor in mouse Leydig cells.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research from our laboratory has determined the transcript profiles for developing fetal rat female and male reproductive tracts following transplacental exposure to estrogens. Prenatal exposure to bisphenol A (BPA) or 17-α-ethynyl estradiol (EE) significantly affects steroidogenic acute regulatory (StAR) protein transcript levels in the developing male rat reproductive tract. The purpose of this study was to establish the intratesticular distribution and temporal expression pattern of StAR, a key gene involved in steroidogenesis. Beginning on gestation day (GD) 11, pregnant Sprague-Dawley rats were exposed daily to 10μg/kg/day EE and fetal testes were harvested at GD16, 18, or 20. Quantitative reverse transcriptase PCR (QRT-PCR) demonstrated no significant difference in StAR transcript levels present at GD16. However, at GD18, StAR transcripts were significantly decreased following exposure. Immunohistochemistry demonstrated similar StAR protein levels in interstitial region of GD16 testes and an obvious decrease in StAR protein levels in the interstitial region of GD18 testes. Moreover, starting at GD11 additional dams were dosed with 0.001 or 0.1 μg/kg/day EE or 0.02, 0.5, 400 mg/kg/day BPA via subcutaneous injections. QRT-PCR validated previous microarray dose-related decreases in StAR transcripts at GD20, whereas immunohistochemistry results demonstrated decreases in StAR protein levels in the interstitial region at the highest EE and BPA doses only. Neither EE nor BPA exposure caused morphological changes in the developing seminiferous cords, Sertoli cells, gonocytes, or the interstitial region or Leydig cells at GD16-20. High levels of estrogens decrease StAR expression in the fetal rat testis during late gestation.
    Birth Defects Research Part B Developmental and Reproductive Toxicology 07/2012; 95(4):318-25. · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been known for over three decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, since P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys and humans do not express the A or B form of the classic nuclear receptor for progesterone (PGR). In contrast, these granulosa cells express other progesterone binding proteins, one of which is referred to as Progesterone Receptor Membrane Component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4's anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T cell specific transcription factor/lymphoid enhancer factor (Tcf/Lef)-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4-activation of PGRMC1 results in the regulation of granulosa cell function.
    Reproduction 02/2014; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Progesterone (P4) is a metabolic precursor for a number of steroids, including estrogens and androgens. P4 also has diverse roles within the vertebrate ovary that include oocyte growth and development. The objectives of this study were to measure the effects of P4 on testosterone (T) and 17β-estradiol (E2) production in the fathead minnow (FHM) ovary and on the mRNA abundance of transcripts involved in steroidogenesis and steroid receptor signaling. Ovary explants were treated with P4 (10(-6) M) for 6 and 12 hours. P4 administration significantly increased T production ∼3-fold at both 6 and 12 hours, whereas E2 production was not affected, consistent with the hypothesis that excess P4 is not converted to terminal estrogens in the mature ovary. Nuclear progesterone receptor mRNA was decreased at 6 hours and membrane progesterone receptor gamma-2 mRNA was significantly down-regulated at both 6 hours and 12 hours; however there was no change in membrane progesterone receptor alpha or beta mRNA levels. Androgen receptor (ar) and estrogen receptor 2a (esr2a) mRNA were significantly reduced at 6 hours with P4 treatment, but there was no change in esr2b mRNA at either time point. Transcripts for enzymes in the steroid pathway (star, hsd11b2) were significantly lower at 6 hours compared to controls, whereas cyp17a and cyp19a mRNA abundance did not change with treatments at either time point. These data suggest that P4 incubation can lead to increased T production in the FHM ovary without a concomitant change in E2, and that the membrane bound progestin receptors are differentially regulated by P4 in the teleost ovary. As environmental progestins have received increased attention due to their suspected role as endocrine disruptors, mechanistic data on the role of exogenous P4 treatments in the male and female gonad is warranted.
    General and Comparative Endocrinology 01/2014; · 2.82 Impact Factor