Article

Determination of midodrine in human plasma by high-performance liquid chromatography with fluorescence detection

Fukuoka University, Hukuoka, Fukuoka, Japan
Analytical Sciences (Impact Factor: 1.4). 03/2003; 19(2):317-9. DOI: 10.2116/analsci.19.317
Source: PubMed

ABSTRACT A simple and sensitive fluorometric high-performance liquid chromatographic method was developed for the determination of midodrine in human plasma. After liquid-liquid extraction from plasma, the drug and 2-phenylglycinol (internal standard) were convened into the corresponding fluorescent derivatives by reaction with 3,4-dihydro-6,7-dimethoxy-4-methyl-3-oxoquinoxaline-2-carbonyl chloride, a fluorescence derivatization reagent for amines. The derivatives were separated within 30 min on a reversed-phase column using isocratic elution with acetonitrile-methanol-water (10:30:60, v/v) and were detected spectrofluorometrically at 485 nm with excitation at 400 nm. The detection limit for midodrine was 0.3 pmol (76 pg) per mL plasma at a signal-to-noise ratio of 3.

2 Followers
 · 
291 Views
 · 
0 Downloads
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we introduce a novel approach for the highly selective and sensitive analysis of native fluorescent bioamines (indoleamines and catecholamines). This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the bioamines' amino groups. In this detection process, we monitored the FRET from the native fluorescent moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 15 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated the FRET most effectively. The OPA derivatives of the native fluorescent bioamines emitted OPA fluorescence (445 nm) through an intermolecular FRET process when they were excited at the excitation maximum wavelengths of the native fluorescent bioamines (280 nm). The generation of FRET was confirmed through comparison with the analysis of a nonfluorescent amine (isoleucine) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the indoleamines and catecholamines when performing LC on an ODS column. The detection limits (signal-to-noise ratio, 3) for the indoleamines and catecholamines, at a 20-muL injection volume, were 17-120 and 28-200 fmol, respectively. The sensitivity of the intramolecular FRET-forming derivatization method is higher than those of systems that take advantage of both native fluorescence detection (i.e., without derivatization) and the conventional detection of OPA derivatives. Furthermore, this method provides enough selectivity and sensitivity for the determination of the indoleamines present in the urine of healthy humans.
    Analytical Chemistry 03/2006; 78(3):920-7. DOI:10.1021/ac051414j · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A selective and sensitive fluorometric determination method for native fluorescent peptides has been developed. This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the amino groups of tryptophan (Trp)-containing peptides. In this detection process, we monitored the FRET from the native fluorescent Trp moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 10 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated FRET most effectively. The OPA derivatives of the native fluorescent peptides emitted OPA fluorescence (445 nm) through an intramolecular FRET process when they were excited at the excitation maximum wavelength of the Trp-containing peptides (280 nm). The generation of FRET was confirmed through comparison with the analysis of a non-fluorescent peptide (C-reactive protein fragment (77 - 82)) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the Trp-containing peptides when performing LC on a reversed-phase column. The detection limits (signal-to-noise ratio = 3) for the Trp-containing peptides, at a 20-microL injection volume, were 41 - 180 fmol. The sensitivity of the intramolecular FRET-forming derivatization method is higher than that of the system that takes advantage of the conventional detection of OPA derivatives. Moreover, native non-fluorescent amines and peptides in the sample monitored at FRET detection are weaker than those of conventional fluorescence detection.
    Analytical Sciences 09/2007; 23(8):949-53. DOI:10.2116/analsci.23.949 · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a novel pre-column fluorescence derivatization reagent for amines, F-trap pyrene. This reagent comprises a fluorescent pyrene moiety, an amine-reactive Marshall linker, and a fluorophilic perfluoroalkyl group known as fluorous tag. When the reagent reacts with aliphatic amines and amino acids to give fluorescent derivatives, the fluorous tag in the reagent is eliminated simultaneously. Therefore, excess unreacted reagents in the derivatization reaction solution still have the fluorous tag and could be removed by fluorous solid-phase extraction selectively before high-performance liquid chromatography (HPLC) analysis. By using this reagent, 13 kinds of aliphatic amine (C(2)-C(16)) derivatives can be separated within 40 min by reversed-phase HPLC with gradient elution. In this chromatogram, unreacted reagents peak at around 28 min, greatly decrease after fluorous solid-phase extraction, and do not interfere with the quantification of each amine. The detection limits (S/N = 3) for examined aliphatic amines are 3.6-25 fmol per 20 microL injection. We have also applied this reagent successfully to the amino acid analysis.
    Analytical and Bioanalytical Chemistry 03/2009; 394(1):321-7. DOI:10.1007/s00216-009-2704-1 · 3.58 Impact Factor
Show more