Article

Stratifying differences on ictal/interictal subtraction SPECT images.

The Department of Radiology, Division of Nuclear Medicine, New York University School of Medicine, New York, New York 10016, USA.
Epilepsia (Impact Factor: 3.91). 04/2003; 44(3):379-86. DOI: 10.1046/j.1528-1157.2003.29402.x
Source: PubMed

ABSTRACT Subtraction of interictal from ictal single-photon emission computed tomography (SPECT) yields numerous foci that encompass a range of pixel values scattered in the brain. This preliminary study evaluated the significance of this range of values.
Subtraction images were obtained by registering, normalizing, and subtracting interictal from ictal SPECT for 13 patients. Pixel values of the resulting foci were divided into two groups: group I with 75-100% and group II with 50-75% of the maximal pixel value. Locations of these foci were determined, and concordance with surgical outcomes and scalp and invasive EEG findings was evaluated.
In 10 of 13 cases, group I foci showed good concordance with ictal scalp EEG. In addition, group I foci corresponded well to invasive EEG findings in nine of 10 cases. Group I foci had bilateral distributions in seven of 13 cases. In 10 of 13 cases, group I foci corresponded well to regions of surgical resection. Of these 10 patients, nine showed good concordance with scalp EEG, eight showed good invasive EEG concordance, and eight were seizure free after resection. Conversely, group II foci had good concordance with ictal scalp EEG in only five of 13 cases, and invasive EEG findings, in only five of 10 cases. Group II foci had bilateral distributions in 10 of 13 cases. All 10 cases underwent unilateral surgical resections, and all had good surgical outcomes. In six of 13 cases, group II foci showed concordance with surgical sites. Of these six foci, four had poor concordance with scalp EEG, one had poor concordance with invasive EEG, and five had good surgical outcomes. Sensitivity and specificity for seizure localization of Group I foci were 40% and 88% respectively while sensitivity and specificity of Group II foci were 20% and 79% respectively.
Our data demonstrate that foci with 75-100% of maximal pixel values show good concordance with seizure foci, whereas foci of 50-75% may not. Therefore stratifying ictal/interictal differences may improve the specificity and localizing value of subtraction SPECT.

0 Bookmarks
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surgery of partial epilepsies in childhood has largely benefited from the recent advances of imaging techniques, which carry a triple goal: (1) to contribute to the localization of the epilepsy onset zone, (2) to detect and delineate an underlying lesion, and (3) to study the spatial relationship between the epileptogenic zone and the neighboring functional cortex, in order to select patients and plan the resection. This noninvasive presurgical imaging workup must be compared to clinical and electrical data to estimate the postoperative prognosis, while invasive techniques such as SEEG, cortical stimulations, and IAT often remain indispensable in difficult cases, i.e., in cryptogenic epilepsies. As in adults, advances in MRI allow us to detect more and more subtle underlying lesions, but this requires repeating MR studies during early childhood and using adapted sequence parameters to account for ongoing myelination. Ictal SPECT and PET imaging prove especially useful in planning depth electrode placement when video-EEG is not contributive, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings. Multimodal imaging greatly enhances the sensitivity of all of these techniques. Finally, functional MRI of motor and language functions provide noninvasive cortical mapping of essential functions, using age-adapted paradigms, in cooperating children from age five to six and from IQs around 60.
    Neurochirurgie 06/2008; 54(3):212-8. · 0.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A method is proposed to process ECD brain SPECT images representing epileptic hot spots inside the brain. For validation 35 ictal —interictal patient image data were processed. The images were registered by a normalized mutual information method, then the separation of the suspicious and normal brain areas were performed by two threshold-based segmentations. Normalization between the images was performed by local normal brain mean values. Based on the validation made by two medical physicians, minimal human intervention in the segmentation parameters was necessary to detect all epileptic spots and minimize the number of false spots inside the brain.
    12/2008: pages 307-310;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Partial seizures produce increased cerebral blood flow in the region of seizure onset. These regional cerebral blood flow increases can be detected by single photon emission computed tomography (ictal SPECT), providing a useful clinical tool for seizure localization. However, when partial seizures secondarily generalize, there are often questions of interpretation since propagation of seizures could produce ambiguous results. Ictal SPECT from secondarily generalized seizures has not been thoroughly investigated. We analysed ictal SPECT from 59 secondarily generalized tonic-clonic seizures obtained during epilepsy surgery evaluation in 53 patients. Ictal versus baseline interictal SPECT difference analysis was performed using ISAS (http://spect.yale.edu). SPECT injection times were classified based on video/EEG review as either pre-generalization, during generalization or in the immediate post-ictal period. We found that in the pre-generalization and generalization phases, ictal SPECT showed significantly more regions of cerebral blood flow increases than in partial seizures without secondary generalization. This made identification of a single unambiguous region of seizure onset impossible 50% of the time with ictal SPECT in secondarily generalized seizures. However, cerebral blood flow increases on ictal SPECT correctly identified the hemisphere (left versus right) of seizure onset in 84% of cases. In addition, when a single unambiguous region of cerebral blood flow increase was seen on ictal SPECT, this was the correct localization 80% of the time. In agreement with findings from partial seizures without secondary generalization, cerebral blood flow increases in the post-ictal period and cerebral blood flow decreases during or following seizures were not useful for localizing seizure onset. Interestingly, however, cerebral blood flow hypoperfusion during the generalization phase (but not pre-generalization) was greater on the side opposite to seizure onset in 90% of patients. These findings suggest that, with appropriate cautious interpretation, ictal SPECT in secondarily generalized seizures can help localize the region of seizure onset.
    Brain 05/2009; 132(Pt 8):2102-13. · 9.92 Impact Factor