Article

C-terminal phosphorylation of MRP2 modulates its interaction with PDZ proteins

University of North Carolina at Chapel Hill, North Carolina, United States
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 04/2003; 302(3):454-61. DOI: 10.1016/S0006-291X(03)00196-7
Source: PubMed

ABSTRACT MRP2, a member of the ABC protein superfamily, functions as an ATP-dependent export pump for anionic conjugates in the apical membranes of epithelial cells. It has been reported that the trafficking of MRP2 is modulated by PKC. Adjacent to the C-terminal PDZ binding motif, which may be involved in the targeting of MRP2, we found a potential PKC phosphorylation site (Ser(1542)). Therefore, we examined the interaction of MRP2 and its phosphorylation-mimicking mutants with different PDZ proteins (EBP50, E3KARP, PDZK1, IKEPP, beta2-syntrophin, and SAP-97). The binding of these PDZ proteins to CFTR and ABCA1, other ABC proteins, possessing PDZ binding motif, was also studied. We observed a strong binding of apically localized PDZ proteins to both MRP2 and CFTR, whereas beta2-syntrophin exhibited binding only to ABCA1. The phosphorylation-mimicking MRP2 mutant and a phosphorylated C-terminal MRP2 peptide showed significantly increased binding to IKEPP, EBP50, and both individual PDZ domains of EBP50. Our results suggest that phosphorylation of the MRP2 PDZ binding motif has a profound effect on the PDZ binding of MRP2.

0 Followers
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein.
    PLoS ONE 05/2014; 9(5):e97360. DOI:10.1371/journal.pone.0097360 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A radioresistant cell line was established by fractionated ionizing radiation (IR) and assessed by a clonogenic assay, flow cytometry, and Western blot analysis, as well as zymography and a wound healing assay. Microarray was performed to profile global expression and to search for differentially expressed genes (DEGs) in response to IR. H460R cells demonstrated increased cell scattering and acidic vesicular organelles compared with parental cells. Concomitantly, H460R cells showed characteristics of increased migration and matrix metalloproteinase activity. In addition, H460R cells were resistant to IR, exhibiting reduced expression levels of ionizing responsive proteins (p-p53 and γ-H2AX); apoptosis-related molecules, such as cleaved poly(ADP ribose) polymerase; and endoplasmic reticulum stress-related molecules, such as glucose-regulated protein (GRP78) and C/EBP-homologous protein compared with parental cells, whereas the expression of anti-apoptotic X-linked inhibitor of apoptosis protein was increased. Among DEGs, syntrophin beta 2 (SNTB2) significantly increased in H460R cells in response to IR. Knockdown of SNTB2 by siRNA was more sensitive than the control after IR exposure in H460, H460R, and H1299 cells. Our study suggests that H460R cells have differential properties, including cell morphology, potential for metastasis, and resistance to IR, compared with parental cells. In addition, SNTB2 may play an important role in radioresistance. H460R cells could be helpful in in vitro systems for elucidating the molecular mechanisms of and discovering drugs to overcome radioresistance in lung cancer therapy.
    12/2013; 11(4):245-53. DOI:10.5808/GI.2013.11.4.245
  • [Show abstract] [Hide abstract]
    ABSTRACT: NHERF1 is a multifunctional scaffolding protein that interacts with receptors and ion transporters in its PDZ domains, and with the Ezrin-Radixin-Moesin (ERM) family of proteins in its carboxy-terminus. The role of NHERF-1 in hepatocyte function remains largely unknown. Here we examine the distribution and physiological significance of NHERF1 and Mrp-2 in hepatocytes. A wild-type, radixin binding site mutant (F355R), and NHERF1 PDZ1- and PDZ2-domain adenoviral mutant constructs were tagged with yellow fluorescent protein (YFP) and expressed in polarized hepatocytes to study localization and function of NHERF1. Cellular distribution of NHERF1 and radixin was visualized by fluorescence microscopy. A CMFDA assay was used to characterize Mrp-2 function. Similar to Mrp-2, wild type NHERF-1 and the NHERF-1 PDZ2 deletion mutant were localized to the canalicular membrane. In contrast, the radixin binding site mutant (F355R) and the NHERF1 PDZ1 deletion mutant, which interacts poorly with Mrp-2, were rarely associated with the canalicular membrane. Knockdown of NHERF1 led to dramatically impaired CMFDA secretory response. The NHERF1 PDZ1 and F355R mutants were devoid of a secretory response using CMFDA, while wild type NHERF1 infected cells exhibited increased GSFM secretion. The data indicate that NHERF1 interacts with Mrp-2 via the PDZ1 domain of NHERF1. Further, the findings suggest that NHERF1 is essential for maintaining the localization and function of Mrp-2.
    AJP Cell Physiology 08/2014; 307(8). DOI:10.1152/ajpcell.00011.2014 · 3.67 Impact Factor

Full-text (2 Sources)

Download
52 Downloads
Available from
Jun 6, 2014