Article

Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism.

Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
The Plant Cell (Impact Factor: 9.58). 04/2003; 15(3):771-81.
Source: PubMed

ABSTRACT Gametophytic self-incompatibility in Rosaceae, Solanaceae, and Scrophulariaceae is controlled by the S locus, which consists of an S-RNase gene and an unidentified "pollen S" gene. An approximately 70-kb segment of the S locus of the rosaceous species almond, the S haplotype-specific region containing the S-RNase gene, was sequenced completely. This region was found to contain two pollen-expressed F-box genes that are likely candidates for pollen S genes. One of them, named SFB (S haplotype-specific F-box protein), was expressed specifically in pollen and showed a high level of S haplotype-specific sequence polymorphism, comparable to that of the S-RNases. The other is unlikely to determine the S specificity of pollen because it showed little allelic sequence polymorphism and was expressed also in pistil. Three other S haplotypes were cloned, and the pollen-expressed genes were physically mapped. In all four cases, SFBs were linked physically to the S-RNase genes and were located at the S haplotype-specific region, where recombination is believed to be suppressed, suggesting that the two genes are inherited as a unit. These features are consistent with the hypothesis that SFB is the pollen S gene. This hypothesis predicts the involvement of the ubiquitin/26S proteasome proteolytic pathway in the RNase-based gametophytic self-incompatibility system.

Full-text

Available from: Ryutaro Tao, May 20, 2015
1 Follower
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. There is no evidence that T2-RNase lineage genes could be determining GSI in C. striatus. Therefore, to characterize the Fabaceae S-pistil gene(s), expression analyses, levels of diversity, and segregation analyses in controlled crosses are needed for those genes showing high expression levels in the tissues where GSI occurs.
    BMC Plant Biology 06/2015; 15(1). DOI:10.1186/s12870-015-0497-2 · 3.94 Impact Factor
  • Acta Agronomica Hungarica 12/2011; 59(4):379-395. DOI:10.1556/AAgr.59.2011.4.9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chinese cherry (Prunus pseudocerasus) has many natural tetraploid species within Prunus. The pollen grains of tetraploid Chinese cherry are hetero-diploid, the two S-haplotypes in the pollen are a combination of two of the four possible S-haplotypes. The abnormal segregation ratios of pollen-S indicate that a few hetero-diploid pollen grains could inactivate self-stylar S-RNase inside the pollen tube and grow better into the self-ovaries than to the others. In this study, three Chinese cherry cultivars, “Daiba” (S 1 S 2 S 5 S 8 ), “Taishanganying” (S 1 S 2 S 4 S 6 ), and “Laiyangduanzhi” (S 1 S 2 S 8 S x ), were used to investigate the inheritance of hetero-diploid pollen-S alleles in non-self receptors. Genetic analysis showed that the distribution of S-haplotypes is unequally expressed in self- and cross-pollinated progenies. The S 2 -haplotype, which is found with lowest frequency in all progeny plants, is a likely lethal mutation. Moreover, the number of individuals with two different S-haplotypes was also unequal in the two cross-pollinated progenies. Notably, the number of individuals with S 1 S 5 and S 1 S 8 genotypes was larger than other genotypes in the cross-pollinated progeny of “Laiyangduanzhi” × “Daiba”, and the number of individuals with S 1 S 4 , S 1 S 6 , and S 4 S 6 genotypes was larger than S 2 -haplotypes in the cross-pollinated progeny of “Laiyangduanzhi” × “Taishanganying”. These results indicate that only a few genotypes of hetero-diploid pollen grains have the capability to grow into the ovaries of “Laiyangduanzhi”. Interestingly, the pollen grains with S 5 S 8 genotypes, which is self-compatible, was incompatible with the styles of “Laiyangduanzhi”, while the pollen grains with S 1 S 8 , S 1 S 6 and S 4 S 6 genotypes, which are self-incompatible, were compatible with the styles of “Laiyangduanzhi”.
    Tree Genetics & Genomes 06/2014; 10(3):1-7. DOI:10.1007/s11295-014-0708-2 · 2.44 Impact Factor