Article

Regulation of Bcl-2 expression by dihydrotestosterone in hormone sensitive LNCaP-FGC prostate cancer cells.

The Journal of Urology (Impact Factor: 3.75). 05/2003; 169(4):1553-7. DOI: 10.1097/01.ju.0000055140.91204.c7
Source: PubMed

ABSTRACT Up-regulation of the anti-apoptotic bcl-2 proto-oncogene is associated with androgen independent prostate cancer progression. This observation suggests that the expression of bcl-2 may be negatively regulated by androgens in prostate cancer cells.
The expression of the proto-oncogene bcl-2 was assessed in the hormone sensitive prostate cancer cell line LNCaP-FGC in the presence and absence of a physiological concentration of 1 nM. dihydrotestosterone (DHT). Sequence analysis of the bcl-2 promoter regions demonstrated the presence of 2 potential androgen response elements. Transient transfections of luciferase reporter constructs containing these potential androgen response elements into LNCaP-FGC cells in the presence and absence of DHT were performed. Steady-state transcripts of bcl-2 were assessed using RNase protection assays.
Cells cultured in charcoal stripped serum in the presence of DHT resulted in down-regulation of bcl-2 protein. Down-regulation of bcl-2 protein and mRNA by DHT was inhibited by coincubation with the antiandrogen bicalutamide, an agent that competitively inhibits binding of DHT to androgen receptor. Luciferase reporter constructs containing candidate androgen response elements were transrepressed in the presence of DHT. Bcl-2 mRNA was also down-regulated by DHT and this down-regulation could not be abolished by cycloheximide.
Together these results suggest that the suppression of bcl-2 expression by DHT in hormone sensitive LNCaP-FGC prostate cancer cells occurs directly. In addition, these results provide a possible mechanistic basis for the up-regulation (derepression) of bcl-2 observed in hormone independent prostate cancers.

0 Bookmarks
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously characterized the LNCaP prostate cancer progression model and showed that despite loss of Bcl-2 protein in the androgen-unresponsive LNCaP-unresponsive (UR) cells, these cells maintained an increased resistance to the induction of apoptosis. Since the loss of Bcl-2 protein coincided with the progression to androgen-unresponsiveness, we sought to determine if Bcl-2 expression was regulated through androgen signaling pathways. LNCaP-responsive (R) and -UR cells grown in charcoal-stripped serum conditions for 3 months differentiated to a neuroendocrine (NE)-like morphology. Under these conditions, LNCaP-UR cells regained Bcl-2 protein expression, and LNCaP-R cells overexpressed Bcl-2. Chronic exposure to casodex resulted in differentiation of both LNCaP-R and -UR cells to the NE-type morphology accompanied by a marked downregulation of Bcl-2 protein, while Bax protein levels were unchanged. Downregulation of Bcl-2 was post-transcriptional since Bcl-2 message levels were unchanged in LNCaP cells treated with casodex. These data suggest that Bcl-2 is post-transcriptionally modulated by androgen signaling pathways in LNCaP cells.
    Prostate Cancer and Prostatic Diseases 02/2004; 7(2):158-64. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The progression of cells from a normal differentiated state in which rates of proliferation and apoptosis are balanced to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signalling proteins and the evolution and clonal selection of more aggressive cell phenotypes. These events are associated with changes in the expression of numerous other proteins. This process of tumorigenesis involves the altered expression of one or more TRP proteins, depending on the nature of the cancer. The most clearly described changes are those involving TRPM8, TRPV6 and TRPM1. Expression of TRPM8 is substantially increased in androgen-dependent prostate cancer cells, but is decreased in androgen independent and metastatic prostate cancer. TRPM8 expression is regulated, in part, by androgens, most likely through androgen response elements in the TRPM8 promoter region. TRPM8 channels are involved in the regulation of cell proliferation and apoptosis. Expression of TRPV6 is also increased in prostate cancer and in a number of other cancers. In contrast to TRPM8, expression of TRPV6 is not directly regulated by androgens. TRPM1 is highly expressed in early stage melanomas but its expression declines with increases in the degree of aggressiveness of the melanoma. The expression of TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 is also increased in some cancers. The level of expression of TRPM8 and TRPV6 in prostate cancer, and of TRPM1 in melanomas, potentially provides a good prognostic marker for predicting the course of the cancer in individuals. The Drosophila melanogaster, TRPL, and the TRPV1 and TRPM8 proteins, have been used to try to develop strategies to selectively kill cancer cells by activating Ca(2+) and Na(+) entry, producing a sustained increase in the cytoplasmic concentration of these ions, and subsequent cell death by apoptosis and necrosis. TRPV1 is expressed in neurones involved in sensing cancer pain, and is a potential target for pharmacological inhibition of cancer pain in bone metastases, pancreatic cancer and most likely in other cancers. Further studies are required to assess which other TRP proteins are associated with the development and progression of cancer, what roles TRP proteins play in this process, and to develop further knowledge of TRP proteins as targets for pharmaceutical intervention and targeting in cancer.
    Biochimica et Biophysica Acta 09/2007; 1772(8):937-46. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Both the number and the activity of osteoblasts are critical for normal bone growth and maintenance. Although a potential role for estrogen in protection of bone mass through inhibition of osteoblast apoptosis has been proposed, a function for androgen is much less clear. The aim of this study was to establish a direct role for androgen to influence osteoblast apoptosis both in vitro and in vivo. AR-MC3T3-E1 cells, with androgen receptor (AR) overexpression controlled by the type I collagen promoter, were treated with the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT). Apoptosis was assessed by three different techniques including DNA fragmentation, caspase-3 activation, and changes in mitochondrial membrane potential. Transactivation of AR by DHT enhanced apoptosis while 17beta-estradiol (E(2)) treatment reduced apoptosis in both proliferating preosteoblasts and mature osteocyte-like cells. To explore mechanism, the apoptosis regulators Bcl-2 (antiapoptotic) and Bax (proapoptotic) were evaluated. Western analysis revealed that DHT decreased Bcl-2 resulting in a significantly increased Bax/Bcl-2 ratio. Regulation of Bcl-2 was post-transcriptional since bcl-2 mRNA levels were unaffected by DHT treatment. Furthermore, ubiquitination of Bcl-2 was increased and serine phosphorylation was reduced, consistent with inhibition of MAP kinase signaling by DHT. Increased Bax/Bcl-2 ratio was essential since either Bcl-2 overexpression or Bax downregulation by RNA interference (RNAi) partially abrogated or reversed DHT-enhanced osteoblastic apoptosis. In order to establish physiologic significance in vivo, AR-transgenic mice with AR overexpression in the osteoblast lineage and thus enhanced androgen sensitivity were characterized. In male AR-transgenic mice, increased osteoblast apoptosis was observed in vivo even in association with new bone formation. Thus, although estrogen can be antiapoptotic, androgen stimulates osteoblast and osteocyte apoptosis through an increased Bax/Bcl-2 ratio even in anabolic settings. These results identify a new mechanism for androgen regulation of osteoblast activity distinct from estrogen, and suggest that enhanced apoptosis can be associated with anabolic stimulation of new bone growth. Androgens thus play a distinct role in skeletal homeostasis.
    Bone 06/2006; 38(5):637-51. · 4.46 Impact Factor