Article

Medium-Chain Triglycerides Increase Energy Expenditure and Decrease Adiposity in Overweight Men

School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
Obesity research (Impact Factor: 4.95). 03/2003; 11(3):395-402. DOI: 10.1038/oby.2003.53
Source: PubMed

ABSTRACT The objectives of this study were to compare the effects of diets rich in medium-chain triglycerides (MCTs) or long-chain triglycerides (LCTs) on body composition, energy expenditure, substrate oxidation, subjective appetite, and ad libitum energy intake in overweight men.
Twenty-four healthy, overweight men with body mass indexes between 25 and 31 kg/m(2) consumed diets rich in MCT or LCT for 28 days each in a crossover randomized controlled trial. At baseline and after 4 weeks of each dietary intervention, energy expenditure was measured using indirect calorimetry, and body composition was analyzed using magnetic resonance imaging.
Upper body adipose tissue (AT) decreased to a greater extent (p < 0.05) with functional oil (FctO) compared with olive oil (OL) consumption (-0.67 +/- 0.26 kg and -0.02 +/- 0.19 kg, respectively). There was a trend toward greater loss of whole-body subcutaneous AT volume (p = 0.087) with FctO compared with OL consumption. Average energy expenditure was 0.04 +/- 0.02 kcal/min greater (p < 0.05) on day 2 and 0.03 +/- 0.02 kcal/min (not significant) on day 28 with FctO compared with OL consumption. Similarly, average fat oxidation was greater (p = 0.052) with FctO compared with OL intake on day 2 but not day 28.
Consumption of a diet rich in MCTs results in greater loss of AT compared with LCTs, perhaps due to increased energy expenditure and fat oxidation observed with MCT intake. Thus, MCTs may be considered as agents that aid in the prevention of obesity or potentially stimulate weight loss.

0 Followers
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To assess the effect of replacing dietary long-chain triacylglycerols (LCTs) with medium-chain triacylglycerols (MCTs) on body composition in adults. Methods: We conducted a meta-analysis of randomized controlled trials (RCTs), to determine whether individuals assigned to replace at least 5 g of dietary LCTs with MCTs for a minimum of 4 weeks show positive modifications on body composition. We systematically searched, through July 2013, the CENTRAL, EMBASE, LILACS, and MEDLINE databases for RCTs that investigated the effects of MCT intake on body composition in adults. Two authors independently extracted data and assessed risk of bias. Weighted mean differences (WMDs) were calculated for net changes in the outcomes. We assessed heterogeneity by the Cochran Q test and I2 statistic and publication bias with the Egger's test. Prespecified sensitivity analyses were performed. Results: In total, 11 trials were included, from which 5 presented low risk of bias. In the overall analysis, including all studies, individuals who replaced dietary LCT with MCT showed significantly reduced body weight (WMD, −0.69 kg; 95% confidence interval [CI], −1.1 to −0.28; p = 0.001); body fat (−0.89 kg; 95% CI, −1.27 to −0.51; p < 0.001), and WC (−1.78 cm; 95% CI, −2.4 to −1.1; p < 0.001). The overall quality of the evidence was low to moderate. Trials with a crossover design were responsible for the heterogeneity. Conclusion: Despite statistically significant results, the recommendation to replace dietary LCTs with MCTs must be cautiously taken, because the available evidence is not of the highest quality.
    Journal of the American College of Nutrition 02/2015; 34(2). DOI:10.1080/07315724.2013.879844 · 1.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Medium-chain triglycerides (MCTs) may result in negative energy balance and weight loss through increased energy expenditure and lipid oxidation. However, results from human intervention studies investigating the weight reducing potential of MCTs, have been mixed. To conduct a systematic review and meta-analysis of randomized controlled trials comparing the effects of MCTs, specifically C8:0 and C10:0, to long-chain triglycerides (LCTs) on weight loss and body composition in adults. Changes in blood lipid levels were secondary outcomes. Randomized controlled trials >3 weeks' duration conducted in healthy adults were identified searching Web of Knowledge, Discover, PubMed, Scopus, New Zealand Science, and Cochrane CENTRAL until March 2014 with no language restriction. Identified trials were assessed for bias. Mean differences were pooled and analyzed using inverse variance models with fixed effects. Heterogeneity between studies was calculated using I(2) statistic. An I(2)>50% or P<0.10 indicated heterogeneity. Thirteen trials (n=749) were identified. Compared with LCTs, MCTs decreased body weight (-0.51 kg [95% CI-0.80 to -0.23 kg]; P<0.001; I(2)=35%); waist circumference (-1.46 cm [95% CI -2.04 to -0.87 cm]; P<0.001; I(2)=0%), hip circumference (-0.79 cm [95% CI -1.27 to -0.30 cm]; P=0.002; I(2)=0%), total body fat (standard mean difference -0.39 [95% CI -0.57 to -0.22]; P<0.001; I(2)=0%), total subcutaneous fat (standard mean difference -0.46 [95% CI -0.64 to -0.27]; P<0.001; I(2)=20%), and visceral fat (standard mean difference -0.55 [95% CI -0.75 to -0.34]; P<0.001; I(2)=0%). No differences were seen in blood lipid levels. Many trials lacked sufficient information for a complete quality assessment, and commercial bias was detected. Although heterogeneity was absent, study designs varied with regard to duration, dose, and control of energy intake. Replacement of LCTs with MCTs in the diet could potentially induce modest reductions in body weight and composition without adversely affecting lipid profiles. However, further research is required by independent research groups using large, well-designed studies to confirm the efficacy of MCT and to determine the dosage needed for the management of a healthy body weight and composition. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
    Journal of the American Academy of Nutrition and Dietetics 02/2015; 115(2):249-63. DOI:10.1016/j.jand.2014.10.022 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.
    Asian Australasian Journal of Animal Sciences 02/2015; 28(2):223-30. DOI:10.5713/ajas.14.0328 · 0.56 Impact Factor

Full-text (2 Sources)

Download
532 Downloads
Available from
May 28, 2014