Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome.

Unité de Recherches sur les Handicaps Génétiques de l'Enfant INSERM U-393, et Département de Génétique, Hôpital Necker-Enfants Malades, 149, rue de Sèvres, 75743 Paris Cedex 15, France.
Nature Genetics (Impact Factor: 35.21). 05/2003; 33(4):459-61. DOI: 10.1038/ng1130
Source: PubMed

ABSTRACT Congenital central hypoventilation syndrome (CCHS or Ondine's curse; OMIM 209880) is a life-threatening disorder involving an impaired ventilatory response to hypercarbia and hypoxemia. This core phenotype is associated with lower-penetrance anomalies of the autonomic nervous system (ANS) including Hirschsprung disease and tumors of neural-crest derivatives such as ganglioneuromas and neuroblastomas. In mice, the development of ANS reflex circuits is dependent on the paired-like homeobox gene Phox2b. Thus, we regarded its human ortholog, PHOX2B, as a candidate gene in CCHS. We found heterozygous de novo mutations in PHOX2B in 18 of 29 individuals with CCHS. Most mutations consisted of 5-9 alanine expansions within a 20-residue polyalanine tract probably resulting from non-homologous recombination. We show that PHOX2B is expressed in both the central and the peripheral ANS during human embryonic development. Our data support an essential role of PHOX2B in the normal patterning of the autonomous ventilation system and, more generally, of the ANS in humans.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Central Congenital Hypoventilation Syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some Central Congenital Hypoventilation Syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions.
    Neuroscience Letters 03/2014; · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.
    Cell and Tissue Research 04/2014; · 3.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma is the most frequent extra cranial solid tumor in infants and children. Genetic predisposition to neuroblastoma has been suspected previously due to familial cases of sporadic NB and predisposition to NB in several syndromes. Here, we report on a de novo 14q23.1-q23.3 microdeletion in a male presenting with a neuroblastoma diagnosed at 9 months, and spherocytosis, congenital heart defect, cryptorchidism, hypoplasia of corpus callosum, epilepsy, and developmental delay. Myc-associated-factor X (MAX) haploinsufficiency could be regarded as the predisposing factor to NB. Indeed 14q deletion is a recurrent somatic rearrangement in NB and MAX somatic and germline loss of function mutation have recently been described in pheochromocytoma and paraganglioma. However, MAX was expressed in the tumor of the patient we report on and, accordingly, loss of heterozygosity, mutation, or promoter methylation were excluded. In addition, we discuss the potential involvement in the clinical spectrum presented by the patient of five of the deleted genes, namely DAAM1, PLEKHG3, SPTB, AKAP5, and ARID4A. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 03/2014; · 2.30 Impact Factor


Available from
May 31, 2014