Article

Structural heterogeneity and genomic distribution of Drosophila melanogaster LTR-retrotransposons

Area de Genética, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain.
Molecular Biology and Evolution (Impact Factor: 14.31). 04/2003; 20(3):401-9. DOI: 10.1093/molbev/msg047
Source: PubMed

ABSTRACT Structural heterogeneity of five long terminal repeat (LTR) retrotransposon families (297, mdg 1, 412, copia, and 1731) was investigated in Drosophila melanogaster. The genomic distribution of canonical and rearranged elements was studied by comparing hybridization patterns of Southern blots on salivary glands from adult females and males with in situ hybridization on polytene chromosomes. The proportion and genomic distribution of noncanonical copies is distinctive to each family and presents constant features in the four different D. melanogaster strains studied. Most elements of families 297 and mdg 1 were noncanonical and presented large interstock and intrastock polymorphism. Noncanonical elements of these two families were mostly located in euchromatin, although not restricted to it. The elements of families 412 and copia were better conserved. The proportion of noncanonical elements was lower. The 1731 family is mainly composed of noncanonical, beta-heterochromatic elements that are highly conserved among stocks. The relation of structural polymorphism to phylogeny, transpositional activity and the role of natural selection in the maintenance of transposable elements are discussed.

Download full-text

Full-text

Available from: Ana Domínguez, Jul 09, 2014
0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intragenomic distribution of five retrotransposon families (297, 1731, copia, mdg1 and roo) in the species of the melanogaster complex was studied by comparing results of the Southern blotting technique in males and females with those of in situ hybridization. The degree of structural polymorphism of each family in the different species was also investigated by restriction enzyme analysis. It was found that genomic distribution is a trait that depends on the family and species. The distribution of roo is mainly euchromatic in the four species and 1731 is heterochromatic, but the distribution of families 297, copia and mdg1 is markedly different in the melanogaster and simulans clades. These families were mainly euchromatic in D. melanogaster but heterochromatic in its sibling species. In the simulans clade most copia and mdg1 elements are located on chromosome Y. Differences in genomic distribution are unrelated with structural conservation. The relation of intragenomic distribution to phylogeny, transpositional activity and the role of the host genome are discussed.
    Genetica 12/2009; 138(6):579-86. DOI:10.1007/s10709-009-9430-7 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two sets of mutation accumulation lines, one reared at 28 degrees C and the other at 24 degrees C, were compared for their transposition and rearrangement rates of eleven transposable element families. The changes affecting mobile elements were analysed by the Southern technique and in situ hybridization. No differences were found between treated and control lines. The role of the host genotype in transposition control and the significance of structural mutations in transposable element dynamics are discussed.
    Genetica 09/2006; 128(1-3):11-9. DOI:10.1007/s10709-005-2480-6 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transposable elements (TEs) have been identified in every organism in which they have been looked for. The sequencing of large genomes, such as the human genome and those of Drosophila, Arabidopsis, Caenorhabditis, has also shown that they are a major constituent of these genomes, accounting for 15% of the genome of Drosophila, 45% of the human genome, and more than 70% in some plants and amphibians. Compared with the 1% of genomic DNA dedicated to protein-coding sequences in the human genome, this has prompted various researchers to suggest that the TEs and the other repetitive sequences that constitute the so-called "noncoding DNA", are where the most stimulating discoveries will be made in the future (Bromham, 2002). We are therefore getting further and further from the original idea that this DNA was simply "junk DNA", that owed its presence in the genome entirely to its capacity for selfish transposition. Our understanding of the structures of TEs, their distribution along the genomes, their sequence and insertion polymorphisms within genomes, and within and between populations and species, their impact on genes and on the regulatory mechanisms of genetic expression, their effects on exon shuffling and other phenomena that reshape the genome, and their impact on genome size has increased dramatically in recent years. This leads to a more general picture of the impact of TEs on genomes, though many copies are still mainly selfish or junk DNA. In this review we focus mainly on discoveries made in Drosophila, but we also use information about other genomes when this helps to elucidate the general processes involved in the organization, plasticity, and evolution of genomes.
    Cytogenetic and Genome Research 02/2005; 110(1-4):25-34. DOI:10.1159/000084935 · 1.91 Impact Factor