Genotypic variability at the major histocompatibility complex (B and Rfp-Y) in Camperos broiler chickens.

Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.
Animal Genetics (Impact Factor: 2.21). 05/2003; 34(2):88-95. DOI: 10.1046/j.1365-2052.2003.00944.x
Source: PubMed

ABSTRACT Evidence for the importance of major histocompatibility complex (MHC) genotype in immunological fitness of chickens continues to accumulate. The MHC B haplotypes contribute resistance to Marek's and other diseases of economic importance. The Rfp-Y, a second cluster of MHC genes in the chicken, may also contribute to disease resistance. Nevertheless, the MHC B and Rfp-Y haplotypes segregating in broiler chickens are poorly documented. The Camperos, free-range broiler chickens developed in Argentina, provide an opportunity to evaluate MHC diversity in a genetically diverse broiler stock. Camperos are derived by cross-breeding parental stocks maintained essentially without selection since their founding. We analysed 51 DNA samples from the Camperos and their parental lines for MHC B and Rfp-Y variability by restriction fragment pattern (rfp) and SSCP typing methods for B-G, B-F (class Ia), B-Lbeta (class II) and Y-F (class Ib) diversity. We found evidence for 38 B-G genotypes. The Camperos B-G patterns were not shared with White Leghorn controls, nor were any of a limited number of Camperos B-G gene sequences identical to published B-G sequences. The SSCP assays provided evidence for the presence of at least 28 B-F and 29 B-Lbeta genotypes. When considered together B-F, B-L, and B-G patterns provide evidence for 40 Camperos B genotypes. We found even greater Rfp-Y diversity. The Rfp-Y class I-specific probe, 163/164f, revealed 44 different rfps among the 51 samples. We conclude that substantial MHC B and Rfp-Y diversity exists within broiler chickens that might be drawn upon in selecting for desirable immunological traits.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The chicken major histocompatibility complex (MHC) has abundant SNP and indels, and is closely related with host genetic resistance or susceptibility to disease. The LEI0258 locus is the most variable in the MHC region, and is a useful marker in reflecting the variability of MHC. In this study, we applied the LEI0258 microsatellite marker to investigate polymorphism of MHC in Chinese indigenous chickens. The size of LEI0258 fragments in 1,617 individuals from 33 Chinese chicken breeds was detected by capillary electrophoresis, and 213 samples with different fragment sizes were further sequenced. A total of 69 alleles ranging from 193 to 489 bp were found, including 21 novel alleles and 28 private alleles that existed in only one breed. Three alleles, 249 bp (7.04%), 489 bp (6.57%), and 309 bp (6.10%), were the most frequent in the indigenous chickens. A 489-bp novel allele was unique in Chinese local chicken breeds. Three indels and 4 SNP of upstream/downstream of 2 repeat regions (R13/R12) were found. Abundant variations indicate high genetic diversity at the MHC region in indigenous chickens. Rare alleles are vulnerable to genetic drift in small populations, and can be used as molecular markers for monitoring the dynamic conservation of many indigenous breeds.
    Poultry Science 12/2013; 92(12):3113-9. · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New polymorphism of major histocompatibility complex B-G genes was investigated by amplification and digestion of a 401bp fragment including intron 1 and exon 2 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique with two restriction enzymes of Msp I and Tas I in eight breeds of Chinese indigenous chickens and one exotic breed. In the fragment region of the gene, three novel single nucleotide polymorphisms (SNPs) were detected at the two restriction sites. We found the transition of two nucleotides of A294G and T295C occurred at Tas I restriction site, and consequently led to a non-synonymous substitution of asparagine into serine at position 54 within the deduced amino acid sequence of immunoglobulin variable-region-like domain encoded by the exon 2 of B-G gene. It was observed at rare frequency that a single mutation of A294G occurring at the site, also caused an identical substitution of amino acid, asparagine 54-to-serine, to that we described previously. And the transversion of G319C at Msp I site led to a non-synonymous substitution, glutamine 62-to-histidine. The new alleles and allele frequencies identified by the PCR-RFLP method with the two enzymes were characterized, of which the allele A and B frequencies at Msp I and Tas I loci were given disequilibrium distribution either in the eight Chinese local breeds or in the exotic breed. By comparison, allele A at Msp I locus tended to be dominant, while, the allele B at Tas I locus tended to be dominant in all of the breeds analyzed. In Tibetan chickens, the preliminary association analysis revealed that no significant difference was observed between the different genotypes identified at the Msp I and Tas I loci and the laying performance traits, respectively.
    Asian Australasian Journal of Animal Sciences 07/2005; 18(7). · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to estimate the effects of genotype for chicken major histocompatibility complex (MHC) B-LB genes on economic traits. To detect polymorphism, 400 bp fragments of MHC B-LB genes were obtained and sequenced. After digestions using restriction enzyme Hea III, two restriction enzyme sites were observed. There were two mutations at position 427 and 651 those were decided as Type I and Type II, respectively. Using RFLP analyses, type I were genotyped to TT, TC and CC, and type II to MM, Mm and mm. The relatively higher TC genotype frequencies (0.8) of Type I and Mm genotype frequencies (0.88) of Type II were observed in Korean native chickens. The effects of the genotype on 150 days body weight trait were investigated by the associations of CC and Mm genotypes (P
    Korean Journal of Poultry Science. 01/2005; 32(1).


Available from
May 20, 2014