c-Myc-induced extrachromosomal elements carry active chromatin.

Manitoba Institute of Cell Biology, CancerCare Manitoba, the Genomic Center for Cancer Research and Diagnosis, Winnipeg, Manitoba, Canada.
Neoplasia (Impact Factor: 5.4). 03/2003; 5(2):110-20. DOI: 10.1016/S1476-5586(03)80002-7
Source: PubMed

ABSTRACT Murine Pre-B lymphocytes with experimentally activated MycER show both chromosomal and extrachromosomal gene amplification. In this report, we have elucidated the size, structure, and functional components of c-Myc-induced extrachromosomal elements (EEs). Scanning electron microscopy revealed that EEs isolated from MycER-activated Pre-B+ cells are an average of 10 times larger than EEs isolated from non-MycER-activated control Pre-B- cells. We demonstrate that these large c-Myc-induced EEs are associated with histone proteins, whereas EEs of non-MycER-activated Pre B- cells are not. Immunohistochemistry and Western blot analyses using pan-histone-specific, histone H3 phosphorylation-specific, and histone H4 acetylation-specific antibodies indicate that a significant proportion of EEs analyzed from MycER-activated cells harbors transcriptionally competent and/or active chromatin. Moreover, these large, c-Myc-induced EEs carry genes. Whereas the total genetic make-up of these c-Myc-induced EEs is unknown, we found that 30.2% of them contain the dihydrofolate reductase (DHFR) gene, whereas cyclin C (CCNC) was absent. In addition, 50% of these c-Myc-activated Pre-B+ EEs incorporated bromodeoxyuridine (BrdU), identifying them as genetic structures that self-propagate. In contrast, EEs isolated from non-Myc-activated cells neither carry the DHFR gene nor incorporate BrdU, suggesting that c-Myc deregulation generates a new class of EEs.

  • Source
    Neoplasia (New York, N.Y.) 11/2004; DOI:10.1593/neo.6-6ED · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromothripsis (chromosome shattering) has been described as complex rearrangements affecting single chromosome(s) in one catastrophic event. The chromosomes would be "shattered" and "stitched together" during this event. This phenomenon is proposed to constitute the basis for complex chromosomal rearrangements seen in 2-3% of all cancers and in ∼ 25% of bone cancers. Here we discuss chromothripsis, the use of this term and the evidence presented to support a single catastrophic event that remodels the genome in one step. We discuss why care should be taken in using the term chromothripsis and what evidence is lacking to support its use while describing complex rearrangements. © 2012 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 07/2012; 51(11):975-81. DOI:10.1002/gcc.21981 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In general, human pathogen-related small circular deoxyribonucleic acid (DNA) molecules are bacterial plasmids and a group of viral genomes. Plasmids are extra-chromosomal small circular DNAs that are capable of replicating independently of the host, and are present throughout a variety of different microorganisms, most notably bacteria. While plasmids are not essential components of the host, they can impart an assortment of survival enhancing genes such as for fertility, drug resistance, and toxins. Furthermore, plasmids are of particular interest to molecular biology especially in relation to gene-cloning. Among viruses, genomes of anelloviruses, papillomaviruses, and polyomaviruses consist of small circular DNA. The latter two virus families are known for their potential roles in a number of pathogenic processes. Human papillomaviruses (HPV) are now widely recognised to be associated with a greatly increased risk of cervical cancer, especially oncogenic strains 16 and 18. On the other hand, human cells may contain several types of small circular DNA molecules including mitochondrial DNA (mtDNA). The mitochondrial genome consists of 37 genes that encode for proteins of the oxidation phosphorylation system, transfer ribonucleic acids (tRNAs), and ribosomal RNAs (rRNAs). Though mitochondria can replicate independently of the host; nuclear DNA does encode for several mitochondrial proteins. Mutations in mtDNA contribute to some well characterised diseases; mtDNA is also implicated in several diseases and malignancies with poorly elucidated aetiologies. Furthermore, mtDNA can function as a diagnostic tool. Other extra-chromosomal circular DNAs are usually detected in cancer. This review article is intended to provide an overview of four broad categories of small circular DNAs that are present in non-eukaryotic (plasmids and relevant viral genomes) and eukaryotic (mtDNA and other extra-chromosomal DNAs) systems with reference to human diseases, particularly cancer. For this purpose, a literature search has been carried out mainly from PubMed. Improved understanding of the significance of small circular DNA molecules is expected to have far reaching implications in many fields of medicine.

Full-text (2 Sources)

Available from
Jun 5, 2014