Article

Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a

Brain Science Institute (BSI), RIKEN, Вако, Saitama, Japan
Human Molecular Genetics (Impact Factor: 6.68). 05/2003; 12(8):837-47. DOI: 10.1093/hmg/ddg106
Source: PubMed

ABSTRACT The human UBE3A gene shows brain-specific partial imprinting, and lack of a maternally inherited allele causes Angelman syndrome (AS), which is characterized by neurobehavioral anomalies. In several AS model mice, imprinted Ube3a expression is detected predominantly in the hippocampus, cerebellar Purkinje cells and the olfactory bulb. Therefore, imprinting of mouse Ube3a is thought to be region-specific with different levels of silencing of the paternal Ube3a allele in different brain regions. To determine cell types of imprinted Ube3a expression, we analyzed its imprinting status in embryonic brain cells by using primary cortical cell cultures. RT-PCR and immunofluorescence were performed to determine the allelic expression of the gene. The Ube3a gene encodes two RNA transcripts in the brain, sense and antisense. The sense transcript was expressed maternally in neurons but biallelically in glial cells in the embryonic brain, whereas the antisense transcript was expressed only in neurons and only from the paternal allele. Our data present evidence of brain cell type-specific imprinting, i.e. neuron-specific imprinting of Ube3a in primary brain cell cultures. Reciprocal imprinting of sense and antisense transcripts present only in neurons suggests that the neuron-specific imprinting mechanism is related to the lineage determination of neural stem cells.

Download full-text

Full-text

Available from: Keiichiro Joh, Dec 20, 2013
0 Followers
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic effects on psychiatric traits remain relatively under-studied, and it remains unclear what the sizes of individual epigenetic effects may be, or how they vary between different clinical populations. The gene LRRTM1 (chromosome 2p12) has previously been linked and associated with schizophrenia in a parent-of-origin manner in a set of affected siblings (LOD = 4.72), indirectly suggesting a disruption of paternal imprinting at this locus in these families. From the same set of siblings that originally showed strong linkage at this locus, we analyzed 99 individuals using 454-bisulfite sequencing, from whole blood DNA, to measure the level of DNA methylation in the promoter region of LRRTM1. We also assessed seven additional loci that would be informative to compare. Paternal identity-by-descent sharing at LRRTM1, within sibling pairs, was linked to their similarity of methylation at the gene's promoter. Reduced methylation at the promoter showed a significant association with schizophrenia. Sibling pairs concordant for schizophrenia showed more similar methylation levels at the LRRTM1 promoter than diagnostically discordant pairs. The alleles of common SNPs spanning the locus did not explain this epigenetic linkage, which can therefore be considered as largely independent of DNA sequence variation and would not be detected in standard genetic association analysis. Our data suggest that hypomethylation at the LRRTM1 promoter, particularly of the paternally inherited allele, was a risk factor for the development of schizophrenia in this set of siblings affected with familial schizophrenia, and that had previously showed linkage at this locus in an affected-sib-pair context. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 10/2014; 165(7). DOI:10.1002/ajmg.b.32258
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The male predominance of autism spectrum disorders (ASD) is one of the best-known, and at the same time, one of the least understood characteristics of these disorders. In this paper we review genetic, epigenetic, hormonal, and environmental mechanisms underlying this male preponderance. Sex-specific effects of Y-linked genes (including SRY expression leading to testicular development), balanced and skewed X-inactivation, genes that escape X-inactivation, parent-of-origin allelic imprinting, and the hypothetical heterochromatin sink are reviewed. These mechanisms likely contribute to etiology, instead of being simply causative to ASD. Environments, both internal and external, also play important roles in ASD's etiology. Early exposure to androgenic hormones and early maternal immune activation comprise environmental factors affecting sex-specific susceptibility to ASD. The gene-environment interactions underlying ASD, suggested here, implicate early prenatal stress as being especially detrimental to boys with a vulnerable genotype.
    Frontiers in Neuroendocrinology 04/2014; 35(3). DOI:10.1016/j.yfrne.2014.03.006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal or paternal genome. In eutherian mammals, extraordinary in utero maternal investment in the brain, and neocortex especially, suggests that convergent evolution of an expanded mammalian neocortex along divergent lineages may be explained, in part, by parent-of-origin-linked gene expression arising from parent-offspring conflict. The influence of this conflict on neocortical development and evolution, however, has not been investigated at the genomic level. In this hypothesis and theory article, we provide preliminary evidence for positive selection in humans in the regions of two platforms of intragenomic conflict-chromosomes 15q11-q13 and X-and explore the potential relevance of cis-regulated imprinted domains to neocortical expansion in mammalian evolution. We present the hypothesis that maternal- and paternal-specific pressures on the developing neocortex compete intragenomically to influence neocortical expansion in mammalian evolution.
    Frontiers in Neuroanatomy 04/2013; 7:2. DOI:10.3389/fnana.2013.00002