Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase.

Shire BioChem Inc., 275 Armand-Frappier Boulevard, Laval, Quebec H7V 4A7, Canada.
Journal of Medicinal Chemistry (Impact Factor: 5.61). 05/2003; 46(8):1283-5. DOI: 10.1021/jm0340400
Source: PubMed

ABSTRACT The HCV NS5B RNA dependent RNA polymerase plays an essential role in viral replication. The discovery of a novel class of inhibitors based on an N,N-disubstituted phenylalanine scaffold and structure-activity relationships studies to improve potency are described.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a global health challenge, affecting approximately 200 million people worldwide. In this study we developed SAR models with advanced machine learning classifiers Random Forest and k Nearest Neighbor Simulated Annealing for 679 small molecules with measured inhibition activity for NS5B genotype 1b. The activity was expressed as a binary value (active/inactive), where actives were considered molecules with IC50 ⩽0.95μM. We applied our SAR models to various drug-like databases and identified novel chemical scaffolds for NS5B inhibitors. Subsequent in vitro antiviral assays suggested a new activity for an existing prodrug, Candesartan cilexetil, which is currently used to treat hypertension and heart failure but has not been previously tested for anti-HCV activity. We also identified NS5B inhibitors with two novel non-nucleoside chemical motifs.
    Bioorganic & medicinal chemistry 03/2013; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection is a global health threat and current therapies warrant the need for novel HCV therapies. Several synthetic analogs targeting HCV serine protease and RNA-dependent RNA polymerase have entered clinical development. To investigate the novel HCV NS5B RdRp polymerase inhibitor, screening of a designed data set consisting of benzimidazole analogs by the FlexX docking approach was performed. Binding interactions at the active sites (PDB ID: 2DXS) were evaluated leading to the rationalization of further synthesis and evaluation procedures.
    Chemical Papers- Slovak Academy of Sciences 67(2). · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) is a key target for antiviral intervention. The goal of this study was to identify the binding site and unravel the molecular mechanism by which natural flavonoids efficiently inhibit HCV RdRp. Screening identified the flavonol quercetagetin as the most potent inhibitor of HCV RdRp activity. Quercetagetin was found to inhibit RdRp through inhibition of RNA binding to the viral polymerase, a yet unknown antiviral mechanism. X-ray crystallographic structure analysis of the RdRp-quercetagetin complex identified quercetagetin's binding site at the entrance of the RNA template tunnel, confirming its original mode of action. This antiviral mechanism was associated with a high barrier to resistance in both site-directed mutagenesis and long-term selection experiments. In conclusion, we identified a new mechanism for non-nucleoside inhibition of HCV RdRp through inhibition of RNA binding to the enzyme, a mechanism associated with broad genotypic activity and a high barrier to resistance. Our results open the way to new antiviral approaches for HCV and other viruses that use an RdRp based on RNA binding inhibition, that could prove to be useful in human, animal or plant viral infections.
    Nucleic Acids Research 07/2014; · 8.81 Impact Factor