Article

Identification of N,N-disubstituted phenylalanines as a novel class of inhibitors of hepatitis C NS5B polymerase.

Shire BioChem Inc., 275 Armand-Frappier Boulevard, Laval, Quebec H7V 4A7, Canada.
Journal of Medicinal Chemistry (Impact Factor: 5.61). 05/2003; 46(8):1283-5. DOI: 10.1021/jm0340400
Source: PubMed

ABSTRACT The HCV NS5B RNA dependent RNA polymerase plays an essential role in viral replication. The discovery of a novel class of inhibitors based on an N,N-disubstituted phenylalanine scaffold and structure-activity relationships studies to improve potency are described.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of therapeutic agents aimed at the treatment of HCV infections. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening, synthesis and structure-activity relationship (SAR) optimization approach. Virtual screening of 260,000 compounds from the ChemBridge database against the tetracyclic indole inhibitor binding pocket of NS5B (allosteric pocket-1, AP-1), sequentially down-sized the library by 4 orders of magnitude to yield 23 candidates. In vitro evaluation of the NS5B inhibitory activity of the in-silico selected compounds resulted in 17% hit rate, identifying two novel chemotypes. Of these, compound 3, bearing the rhodanine scaffold, proved amenable for productive SAR exploration and synthetic modification. As a result, 25 derivatives that exhibited IC₅₀ values ranging from 7.7 to 68.0 μM were developed. Docking analysis of lead compound 28 within the tetracyclic indole- and benzylidene-binding allosteric pockets (AP-1 and AP-3, respectively) of NS5B revealed topological similarities between these two pockets. Compound 28, a novel rhodanine analog with NS5B inhibitory potency in the low micromolar level range may be a promising lead for future development of more potent NS5B inhibitors.
    Bioorganic & medicinal chemistry 07/2010; 18(13):4630-8. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a global health challenge, affecting approximately 200 million people worldwide. In this study we developed SAR models with advanced machine learning classifiers Random Forest and k Nearest Neighbor Simulated Annealing for 679 small molecules with measured inhibition activity for NS5B genotype 1b. The activity was expressed as a binary value (active/inactive), where actives were considered molecules with IC50 ⩽0.95μM. We applied our SAR models to various drug-like databases and identified novel chemical scaffolds for NS5B inhibitors. Subsequent in vitro antiviral assays suggested a new activity for an existing prodrug, Candesartan cilexetil, which is currently used to treat hypertension and heart failure but has not been previously tested for anti-HCV activity. We also identified NS5B inhibitors with two novel non-nucleoside chemical motifs.
    Bioorganic & medicinal chemistry 03/2013; · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C is a viral liver infection considered as the major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis C virus (HCV) possesses a single positive strand RNA genome encoding a polyprotein composed of approximatively 3000 amino acids. The polyprotein is cleaved at multiple sites by cellular and viral proteases to liberate structural and nonstructural (NS) proteins. NS5B, the RNA-dependent RNA polymerase (RdRp), which catalyzes the HCV RNA replication has emerged as an attractive target for the development of specifically targeted antiviral therapy for HCV (DAA, for direct-acting antivirals). In the last 10 years, a growing number of non-nucleoside compounds have been reported as RdRp inhibitors and few are undergoing clinical trials. Over the past 5 years, several reviews were published all describing potentially active molecules. To the best of our knowledge, only one review covers the structure-activity relationships.(1) In this review, we will discuss the reported non-nucleoside molecules acting as RdRp inhibitors according to their chemical class especially focusing on structure-activity relationship aspects among each class of compounds. Thereafter, we will attempt to address the global structural requirements needed for the design of specific inhibitors of RdRp.
    Medicinal Research Reviews 09/2013; 33(5):934-984. · 9.58 Impact Factor