Two regions responsible for the actin binding of p57, a mammalian coronin family actin-binding protein.

Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.
Biological & Pharmaceutical Bulletin (Impact Factor: 1.85). 05/2003; 26(4):409-16. DOI: 10.1248/bpb.26.409
Source: PubMed

ABSTRACT The actin-binding protein p57, a member of the coronin protein family, is expressed in a variety of immune cells. It has five WD repeats and a coiled-coil motif containing a leucine zipper, both of which are known to mediate protein-protein interactions. In order to identify the precise actin-binding regions in p57, and to assess the contribution of these structural motifs, we prepared various truncated p57 as fusion proteins with glutathione S-transferase (GST) and examined their actin-binding activity. A co-sedimentation assay demonstrated that p57(1-371) (C-terminal truncated p57) had the ability to bind F-actin, but p57(372-461) (a fragment containing the coiled-coil motif) did not. A segment consisting of the N-terminal 34 amino acids of p57 (p57(1-34)) was found to bind to F-actin in the co-sedimentation assay. Furthermore, fluorescence microscopic observation showed that p57(1-34) was co-localized with F-actin in COS-1 cells after the transfection with the p57(1-34) construct. Deletion of (10)KFRHVF(15), a sequence conserved among coronin-related proteins, from p57(1-34) abolished its actin-binding activity, suggesting that this sequence with basic and hydrophobic amino acids is crucial for p57 to bind to F-actin. However, the N-terminal deletion mutant p57(63-461) retained the binding ability to F-actin. This result suggests the presence of a second actin-binding region. Further deletion analysis revealed that p57(111-204), which includes the second and third WD repeats, also exhibited weak actin-binding activity in the co-sedimentation assay. Taken together, these data strongly suggest that at least two regions within Met-1 to Asp-34 and Ile-111 to Glu-204 of p57 are responsible for its binding to the actin cytoskeleton.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Coronin is a conserved actin binding protein that promotes cellular processes that rely on rapid remodeling of the actin cytoskeleton, including endocytosis and cell motility. However, the exact mechanism by which coronin contributes to actin dynamics has remained elusive for many years. Here, we integrate observations from many groups and propose a unified model to explain how coronin controls actin dynamics through coordinated effects on Arp2/3 complex and cofilin. At the front end of actin networks, coronin protects new (ATP-rich) filaments from premature disassembly by cofilin and recruits Arp2/3 complex to filament sides, leading to nucleation, branching and network expansion. At the rear of networks, coronin has strikingly different activities, synergizing with cofilin to dismantle old (ADP-rich) filaments. Thus, coronin spatially targets Arp2/3 complex and cofilin to opposite ends of actin networks. The net effect of coronin's activities is acceleration of polarized actin subunit flux through filamentous arrays. This increases actin network plasticity and replenishes the actin monomer pool required for new filament growth.
    Sub-cellular biochemistry 02/2008; 48:72-87.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented.
    Genetics and Molecular Biology 07/2009; 32(3):652-65. · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in hematopoietic cells and plays crucial roles in the immune response through reorganization of the actin cytoskeleton. We previously reported that p57/coronin-1 is phosphorylated by protein kinase C (PKC), and the phosphorylation downregulates the association of this protein with actin. In this study, we analyzed the phosphorylation sites of p57/coronin-1 derived from HL60 human leukemic cells by MALDI-TOF-MS, two-dimensional gel electrophoresis and Phos-tag acrylamide gel electrophoresis in combination with site-directed mutagenesis, and identified Ser-2 and Thr-412 as major phosphorylation sites. A major part of p57/coronin-1 was found as an unphosphorylated form in HL60 cells, but phosphorylation at Thr-412 of p57/coronin-1 was detected after the cells were treated with calyculin A, a Ser/Thr phosphatase inhibitor, suggesting that p57/coronin-1 undergoes constitutive turnover of phosphorylation/dephosphorylation at Thr-412. A di-phosphorylated form of p57/coronin-1 was detected after the cells were treated with phorbol 12-myristate 13-acetate plus calyculin A. We then assessed the effects of phosphorylation at Thr-412 on the association of p57/coronin-1 with actin. A co-immunoprecipitation experiment with anti-p57/coronin-1 antibodies and HL60 cell lysates revealed that β-actin was co-precipitated with the unphosphorylated form but not with the phosphorylated form at Thr-412 of p57/coronin-1. Furthermore, the phosphorylation mimic (T412D) of p57/coronin-1 expressed in HEK293T cells exhibited lower affinity for actin than the wild-type or the unphosphorylation mimic (T412A) did. These results indicate that the constitutive turnover of phosphorylation at Thr-412 of p57/coronin-1 regulates its interaction with actin.
    Journal of Biological Chemistry 10/2012; · 4.65 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014