Article

The alterations in adenosine nucleotides and lactic acid levels in striated muscles following death with cervical dislocation or electric shock.

Atatürk University, Medical School, Department of Biochemistry, Erzurum/Turkey.
Soudní lékarství / casopis Sekce soudního lékarstvi Cs. lékarské spolecnosti J. Ev. Purkyne 02/2003; 48(1):8-11.
Source: PubMed

ABSTRACT In this study, changes in adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid levels in masseter, triceps, and quadriceps muscles obtained from right and left sides of Spraque-Dawley rats following two different types of death were investigated. The samples were taken immediately and 120 minutes after death occurred either by cervical dislocation or electric shock. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than that of samples obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in masseter muscles of the rats killed with electric shock. When the rats killed with cervical dislocation and with electric shock were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of electric shock, ATP is consumed faster because of immediate contractions during death, resulting in a faster rigor mortis. This finding was confirmed with higher lactic acid levels in muscles of the rats killed with electric shock than the other group. In the cervical dislocation and electric shock group rats, ATP decreased in different levels in the three different muscle types mentioned above, being much decline in masseter in cervical dislocation and in quadriceps in electric shock group. This may be caused by low mass and less glycogen storage of masseter and by near localisation of electrode to quadriceps. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

0 Bookmarks
 · 
51 Views