The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar

Migragen AG, Spemannstrasse 34, D-72076 Tübingen, Germany.
Molecular and Cellular Neuroscience (Impact Factor: 3.73). 04/2003; 22(3):319-30. DOI: 10.1016/S1044-7431(02)00035-0
Source: PubMed

ABSTRACT Axons fail to regenerate in the central nervous system after injury. Chondroitin sulfate proteoglycans (CSPG) expressed in the scar significantly contribute to the nonpermissive properties of the central nervous system environment. To examine the inhibitory activity of a CSPG mixture on retina ganglion cell (RGC) axon growth, we employed both a stripe assay and a nerve fiber outgrowth assay. We show that the inhibition exerted by CSPGs in vitro can be blocked by application of either C3 transferase, a specific inhibitor of the Rho GTPase, or Y27632, a specific inhibitor of the Rho kinase. These results demonstrate that CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK signaling pathway. Consistent with these results, we found that retina ganglion cell axon growth on glial scar tissue was enhanced in the presence of C3 transferase and Y27632, respectively. In addition, we show that the recently identified inhibitory CSPG Te38 is upregulated in the lesioned spinal cord.

Download full-text


Available from: Jan M Schwab, Mar 12, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity. Following injury to the CNS, CSPGs are dramatically upregulated by reactive glia which form a glial scar around the lesion site. Increased level of CSPGs is a hallmark of all CNS injuries and has been shown to limit axonal plasticity, regeneration, remyelination, and conduction after injury. Additionally, CSPGs create a non-permissive milieu for cell replacement activities by limiting cell migration, survival and differentiation. Mounting evidence is currently shedding light on the potential benefits of manipulating CSPGs in combination with other therapeutic strategies to promote spinal cord repair and regeneration. Moreover, the recent discovery of multiple receptors for CSPGs provides new therapeutic targets for targeted interventions in blocking the inhibitory properties of CSPGs following injury. Here, we will provide an in depth discussion on the impact of CSPGs in normal and pathological CNS. We will also review the recent preclinical therapies that have been developed to target CSPGs in the injured CNS. Copyright © 2015. Published by Elsevier Inc.
    Experimental Neurology 04/2015; 269. DOI:10.1016/j.expneurol.2015.04.006 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the forming glial scar at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon lens injury, enabling these neurons to grow axons into the injured optic nerve. The outcome of lens injury stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3- pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased lens injury triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.
    Neurobiology of Disease 04/2013; DOI:10.1016/j.nbd.2013.04.001 · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to analyze the potential role of NG2 chondroitin sulfate proteoglycan in amoeboid morphology and invasiveness of cancer cells. In the highly metastatic amoeboid cell lines A3 and A375M2, siRNA-mediated down-regulation of NG2 induced an amoeboid-mesenchymal transition associated with decreased invasiveness in 3D collagen and inactivation of the GTPase Rho. Conversely, the expression of NG2 in mesenchymal sarcoma K2 cells as well as in A375M2 cells resulted in an enhanced amoeboid phenotype associated with increased invasiveness and elevated Rho-GTP levels. Remarkably, the amoeboid-mesenchymal transition in A375M2 cells triggered by NG2 down-regulation was associated with increased extracellular matrix-degrading ability, although this was not sufficient to compensate for the decreased invasive capability caused by down-regulated Rho/ROCK signaling. Conversely, in K2 cells with overexpression of NG2, the ability to degrade the extracellular matrix was greatly reduced. Taken together, we suggest that NG2-mediated activation of Rho leading to effective amoeboid invasiveness is a possible mechanism through which NG2 could contribute to tumor cell invasion and metastasis.
    European journal of cell biology 06/2012; 91(11-12):969-77. DOI:10.1016/j.ejcb.2012.05.001 · 3.70 Impact Factor