Reduction of Salmonella Typhimurium in experimentally challenged broilers by nitrate adaptation and chlorate supplementation in drinking water.

U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas 77845, USA.
Journal of food protection (Impact Factor: 1.83). 04/2003; 66(4):660-3.
Source: PubMed

ABSTRACT The effects of two feed supplements on Salmonella Typhimurium in the ceca of market-age broilers were determined. Broilers orally challenged 6 days before slaughter with a novobiocin- and nalidixic acid-resistant strain of Salmonella Typhimurium were divided into one of four groups (20 birds each). The first group (the control group) received no treatment, the second group received sodium nitrate (SN) treatment (574 mg of NaNO3 per kg of feed), the third group received experimental chlorate product (ECP) treatment (15 mM NaClO3 equivalents), and the fourth group received ECP treatment in combination with SN treatment. The SN treatment was administered via feed for 5 days immediately before slaughter, and ECP was provided via ad libitum access to drinking water for the last 2 days before slaughter. Cecal contents were subjected to bacterial analysis. Significant (P < 0.05) Salmonella Typhimurium reductions (ca. 2 log units) relative to levels for untreated control broilers were observed for broilers receiving ECP in combination with SN. The ECP-only treatment resulted in significant (P < 0.05) reductions (ca. 0.8 log) of Salmonella Typhimurium in trial 2. We hypothesize that increasing Salmonella Typhimurium nitrate reductase activity resulted in increased enzymatic reduction of chlorate to chlorite, with a concomitant decrease in cecal Salmonella Typhimurium levels. On the basis of these results, preadaptation with SN followed by ECP supplementation immediately preharvest could be a potential strategy for the reduction of Salmonella Typhimurium in broilers.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study evaluated the effects of exposure to different doses of sodium chlorate in 10-week-old pigs. Twenty pigs were divided into four equal groups and treated with different doses of sodium chlorate: 0, 125, 250 and 500 mg kg-1 body weight per day via the drinking water for 7 consecutive days. The results showed a significant decrease (P < 0.05) in red blood cell and white blood cell counts, packed cell volume, haemoglobin, blood urea nitrogen (P < 0.001) and creatinine levels, and an increase in aspartate aminotransferase and alanine aminotransferase (P < 0.05) activities in swine administered sodium chlorate at a dose of 500 mg kg-1 body weight per day. The histopathological study revealed increased numbers of vacuoles in the convoluted tubules, tubular necrosis and degeneration of the renal tubular epithelial cells, depletion of nuclei and lobular necrosis of the liver in all pigs treated with sodium chlorate at 500 mg kg-1 body weight per day. Thus, 7-day administration of sodium chlorate at 500 mg kg-1 body weight per day to pigs affects the liver and kidney tissues as well as the haematologic and serum biochemical parameters.
    Acta Veterinaria Hungarica 03/2012; 60(1):93-101. · 1.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella enterica serovar Enteritidis (SE) is an important source of food-related diarrhoea in humans, and table eggs are considered the primordial source of contamination of the human food chain. Using eggs collected at egg-packing stations as samples could be a convenient strategy to detect colonization of layer flocks. The aim of this study was to evaluate egg yolk anti-Salmonella antibody detection using suspension array analysis. An egg yolk panel from contact-infected and non-colonized laying hens was used for the evaluation. Receiver Operating Characteristic (ROC) curves were generated to define a cut-off value and to assess the overall accuracy of the assay. The diagnostic sensitivity and specificity were estimated by maximum likelihood. Sensitivity was quantified on hen level and on sample level, and also quantified as a function of time since colonization. The area under the ROC curve was estimated at 0.984 (se 0.006, P<0.001). Of all colonized contact-infected hens, 67.6% [95% CI: 46.8, 100] developed an antibody response, which was detectable 17.4 days [14.3, 26.9] after colonization. In total, 98% [95.4, 99.4] of the 'immunopositive' hens had test positive eggs. The overall sensitivity of the immunological test was 66.7% [45.9, 98.7] and the specificity was 98.5% [97.8, 99.1]. This study provided essential parameters for optimizing surveillance programs based on detection of antibodies, and indicates that immunology based on examination of egg yolk gives important information about the Salmonella status of the flock.
    Preventive Veterinary Medicine 03/2010; 95(1-2):137-43. · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eating inappropriately prepared poultry meat is a major cause of foodborne salmonellosis. Our objectives were to determine the efficacy of feed and water additives (other than competitive exclusion and antimicrobials) on reducing Salmonella prevalence or concentration in broiler chickens using systematic review-meta-analysis and to explore sources of heterogeneity found in the meta-analysis through meta-regression. Six electronic databases were searched (Current Contents (1999-2009), Agricola (1924-2009), MEDLINE (1860-2009), Scopus (1960-2009), Centre for Agricultural Bioscience (CAB) (1913-2009), and CAB Global Health (1971-2009)), five topic experts were contacted, and the bibliographies of review articles and a topic-relevant textbook were manually searched to identify all relevant research. Study inclusion criteria comprised: English-language primary research investigating the effects of feed and water additives on the Salmonella prevalence or concentration in broiler chickens. Data extraction and study methodological assessment were conducted by two reviewers independently using pretested forms. Seventy challenge studies (n=910 unique treatment-control comparisons), seven controlled studies (n=154), and one quasi-experiment (n=1) met the inclusion criteria. Compared to an assumed control group prevalence of 44 of 1000 broilers, random-effects meta-analysis indicated that the Salmonella cecal colonization in groups with prebiotics (fructooligosaccharide, lactose, whey, dried milk, lactulose, lactosucrose, sucrose, maltose, mannanoligosaccharide) added to feed or water was 15 out of 1000 broilers; with lactose added to feed or water it was 10 out of 1000 broilers; with experimental chlorate product (ECP) added to feed or water it was 21 out of 1000. For ECP the concentration of Salmonella in the ceca was decreased by 0.61 log(10)cfu/g in the treated group compared to the control group. Significant heterogeneity (Cochran's Q-statistic p≤0.10) was observed among studies examining all organic acids (controlled or challenge experiments), butyric acid, formic acid, a formic/propionic acid mixture, fermented liquid feed, and D-mannose. Meta-regressions were conducted to examine the source of heterogeneity among studies. For prevalence outcomes, 36% and 60% of the total variance was within and between studies, respectively. For concentration outcomes, 39% and 33% of the total variance was within and between studies, respectively. Inadequate blinding and randomization was common, and no studies undergoing meta-analysis or meta-regression were conducted on a commercial farm. The strength of evidence of the effect of these additives was very low. Studies conducted under commercial conditions are needed to understand the potential benefit of these interventions for the poultry industry and to improve the strength of evidence of the effectiveness of these additives.
    Preventive Veterinary Medicine 08/2012; 106(3-4):197-213. · 2.39 Impact Factor