Article

Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2.

Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA.
Nature (Impact Factor: 42.35). 05/2003; 422(6933):730-4. DOI: 10.1038/nature01555
Source: PubMed

ABSTRACT The myocyte enhancer factor-2 (MEF2) family of transcription factors has important roles in the development and function of T cells, neuronal cells and muscle cells. MEF2 is capable of repressing or activating transcription by association with a variety of co-repressors or co-activators in a calcium-dependent manner. Transcriptional repression by MEF2 has attracted particular attention because of its potential role in hypertrophic responses of cardiomyocytes. Several MEF2 co-repressors, such as Cabin1/Cain and class II histone deacetylases (HDACs), have been identified. However, the molecular mechanism of their recruitment to specific promoters by MEF2 remains largely unknown. Here we report a crystal structure of the MADS-box/MEF2S domain of human MEF2B bound to a motif of the transcriptional co-repressor Cabin1 and DNA at 2.2 A resolution. The crystal structure reveals a stably folded MEF2S domain on the surface of the MADS box. Cabin1 adopts an amphipathic alpha-helix to bind a hydrophobic groove on the MEF2S domain, forming a triple-helical interaction. Our studies of the ternary Cabin1/MEF2/DNA complex show a general mechanism by which MEF2 recruits transcriptional co-repressor Cabin1 and class II HDACs to specific DNA sites.

0 Followers
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The exact molecular mechanisms regarding HTLV-1 Tax-mediated viral gene expression and CD4 T-cell transformation have yet to be fully delineated. Herein, utilizing virus-infected primary CD4+ T cells and the virus-producing cell line, MT-2, we describe the involvement and regulation of Myocyte enhancer factor-2 (specifically MEF-2A) during the course of HTLV-1 infection and associated disease syndrome. Inhibition of MEF-2 expression by shRNA and its activity by HDAC9 led to reduced viral replication and T-cell transformation in correlation with a heightened expression of MEF-2 in ATL patients. Mechanistically, MEF-2 was recruited to the viral promoter (LTR, long terminal repeat) in the context of chromatin, and constituted Tax/CREB transcriptional complex via direct binding to the HTLV-1 LTR. Furthermore, an increase in MEF-2 expression was observed upon infection in an extent similar to CREB (known Tax-interacting transcription factor), and HATs (p300, CBP, and p/CAF). Confocal imaging confirmed MEF-2 co-localization with Tax and these proteins were also shown to interact by co-immunoprecipitation. MEF-2 stabilization of Tax/CREB complex was confirmed by a novel promoter-binding assay that highlighted the involvement of NFAT (nuclear factor of activated T cells) in this process via Tax-mediated activation of calcineurin (a calcium-dependent serine-threonine phosphatase). MEF-2-integrated signaling pathways (PI3K/Akt, NF-κB, MAPK, JAK/STAT, and TGF-β) were also activated during HTLV-1 infection of primary CD4+ T cells, possibly regulating MEF-2 activity. We demonstrate the involvement of MEF-2 in Tax-mediated LTR activation, viral replication, and T-cell transformation in correlation with its heightened expression in ATL patients through direct binding to DNA within the HTLV-1 LTR.
    Retrovirology 01/2015; 12(1):23. DOI:10.1186/s12977-015-0140-1 · 4.77 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.
    Gene 11/2014; 555(2). DOI:10.1016/j.gene.2014.11.018 · 2.08 Impact Factor