Article

Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.

Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 2XY, UK.
Nature (Impact Factor: 42.35). 06/2003; 423(6939):506-11. DOI: 10.1038/nature01621
Source: PubMed

ABSTRACT Genes and mechanisms involved in common complex diseases, such as the autoimmune disorders that affect approximately 5% of the population, remain obscure. Here we identify polymorphisms of the cytotoxic T lymphocyte antigen 4 gene (CTLA4)--which encodes a vital negative regulatory molecule of the immune system--as candidates for primary determinants of risk of the common autoimmune disorders Graves' disease, autoimmune hypothyroidism and type 1 diabetes. In humans, disease susceptibility was mapped to a non-coding 6.1 kb 3' region of CTLA4, the common allelic variation of which was correlated with lower messenger RNA levels of the soluble alternative splice form of CTLA4. In the mouse model of type 1 diabetes, susceptibility was also associated with variation in CTLA-4 gene splicing with reduced production of a splice form encoding a molecule lacking the CD80/CD86 ligand-binding domain. Genetic mapping of variants conferring a small disease risk can identify pathways in complex disorders, as exemplified by our discovery of inherited, quantitative alterations of CTLA4 contributing to autoimmune tissue destruction.

0 Bookmarks
 · 
154 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes (T1D) is an autoimmune disorder caused by inflammatory destruction of the pancreatic tissue. The etiopathogenesis and characteristics of the pathologic process of pancreatic destruction are well described. In addition, the putative susceptibility genes for T1D as a monoglandular disease and the relation to polyglandular autoimmune syndrome (PAS) have also been well explored. The incidence of T1D has steadily increased in most parts of the world, especially in industrialized nations. T1D is frequently associated with autoimmune endocrine and non-endocrine diseases and patients with T1D are at a higher risk for developing several glandular autoimmune diseases. Familial clustering is observed, which suggests that there is a genetic predisposition. Various hypotheses pertaining to viral- and bacterial-induced pancreatic autoimmunity have been proposed, however a definitive delineation of the autoimmune pathomechanism is still lacking. In patients with PAS, pancreatic and endocrine autoantigens either colocalize on one antigen-presenting cell or are expressed on two/various target cells sharing a common amino acid, which facilitates binding to and activation of T cells. The most prevalent PAS phenotype is the adult type 3 variant or PAS type III, which encompasses T1D and autoimmune thyroid disease. This review discusses the findings of recent studies showing noticeable differences in the genetic background and clinical phenotype of T1D either as an isolated autoimmune endocrinopathy or within the scope of polyglandular autoimmune syndrome.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is an essential regulator of T-cell responses, and its absence precipitates lethal T-cell hyperactivity. However, whether CTLA-4 acts simply to veto the activation of certain clones or plays a more nuanced role in shaping the quality of T-cell responses is not clear. Here we report that T cells in CTLA-4-deficient mice show spontaneous T-follicular helper (TFH) differentiation in vivo, and this is accompanied by the appearance of large germinal centers (GCs). Remarkably, short-term blockade with anti-CTLA-4 antibody in wild-type mice is sufficient to elicit TFH generation and GC development. The latter occurs in a CD28-dependent manner, consistent with the known role of CTLA-4 in regulating the CD28 pathway. CTLA-4 can act by down-regulating CD80 and CD86 on antigen presenting cells (APCs), thereby altering the level of CD28 engagement. To mimic reduced CD28 ligation, we used mice heterozygous for CD28, revealing that the magnitude of CD28 engagement is tightly linked to the propensity for TFH differentiation. In contrast, other parameters of T-cell activation, including CD62L down-regulation and Ki67 expression, were relatively insensitive to altered CD28 level. Altered TFH generation as a result of graded reduction in CD28 was associated with decreased numbers of GC B cells and a reduction in overall GC size. These data support a model in which CTLA-4 control of immunity goes beyond vetoing T-cell priming and encompasses the regulation of TFH differentiation by graded control of CD28 engagement.
    Proceedings of the National Academy of Sciences 12/2014; 112(2). DOI:10.1073/pnas.1414576112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic polymorphisms in cytotoxic T lymphocyte-associated antigen 4 (CTLA4) play an influential role in graft rejection and the long-term clinical outcome of organ transplantation. We investigated the association of five CTLA4 single-nucleotide polymorphisms (SNPs) (rs733618 C/T, rs4553808 A/G, rs5742909 C/T, rs231775 A/G, and rs3087243 G/A) with de novo malignancy in 1463 Chinese renal transplantation (RT) recipients who underwent a 192-month follow-up. Multivariate analyses revealed that recipient rs231775 genotype is significantly associated with tumorigenesis (P = 0.012). Multiplicative interaction between rs231775 AA and possible risk factors of malignancy revealed two significant results: rs231775 AA × primary diseases and rs231775 AA × number of HLA-mismatch. The frequency of haplotype TACAG was significantly higher in the tumor group (17.07%) than that in the nontumor group (1.53%). In addition, aristolochic acid nephropathy (P = 0.003) and the time of discovery of tumor (P = 0.000) also were independently associated with tumorigenesis. Our data show that the CTLA4 genotype rs231775 AA may be one of risk factors for the development of malignancy and haplotype TACAG was susceptible haplotype in Chinese kidney transplant recipients.
    BioMed Research International 01/2015; 2015:986780. DOI:10.1155/2015/986780 · 2.71 Impact Factor